


o o . » Y 2 )
.. d J ' 22 k ’ o -
7 —"1 du‘u“..’jdﬂu‘u'/‘?‘f’/ @ L‘f
e 0 o0 o0 * 0 0 0o o0 o0
Third International and Fifth National Biomath Conference
IF-Voladiye B s

¥ ko 45 900

o i lod ooy g (Mol lism wilod (o gw

o ) Wbl

3 3 o1

1Pl olostow¥ o







Third International and Fifth National Biomath Conference

F-Foledidyre RN
A0 A0

Dl oo 4155 0 ol sime rolRiils 51 SOy lpl Lol el Coles cou LSS e 90 o dj Slsl, goles
NS 3 s oBadls jo VFY olo 0ls o o)l 5 g g )b )0 S Sl ) (o Gisled (pezmiy g (Mol o (ioles (oges
oy oSl ;o YA Jlo o e Gisles (haegs ¢ jealins oRidls ;o VWAV L jo 00, ol 5l e Gisles s g 5
iler aolez 5 ol oy (alen (rege 5 liews olSiils o VEe e L o (e ales (e 5 el e (ralen (sl
A1 s olhaisle oidls o VFeY Jlo o e

&S 25 Wil 0590 50 g A1) Ltags oo gl s (BT alen la e jo ()15 9 (S | SKamgh Giales (nl )
Sloaie) plo g Ssbe 5l (Sobe Glagslomy i oo 5o (lgiee ool il Cllae s 510 5 0 )50 Hlai JobS roassS
Jleel 51 i 1y o] (6,55 555 5 03903 03ly olsiisn Joo (555 1) (5555 (sloonisS J 7S wged olitil s sl
S0 odnlive dssl> jo adlg

ay allie FO 51 G ey DLl ood slans; w50 o U g (st s o3k el sl O 955 4 2z g L aslsl o
sl 4039, 90 Gluler ol jo pol> Gliie g aslul a5 w57 Jlo )l (loles &l 0o 4 (55l 5 690> (Sl O g0
ola S 03 ebew g G10,08 Colie sl ¥ oo ctan s Ll 059 40 995 (slas jgliws g Slidss 51 g SYlie
olelen (! (55155 0 50 1y Lo a8 lgzmiils 5 laime wiilul 5 galS psle 5 Lol (2l ) 0aSCails 5y 5 oSl o oo duncs
poled 5lRl 50,5 (5 S 5 (5 ke

Sldly o Gled Greziy 5 (Moll i Glales (s 238 OB, Cas 5 (ol,S llogee IS5 Lo (6l aalls o

oS 0958159, Caddee o (oMl (593,1 0lgen i

onles Sl g sele oo

G (> SO



Third International and Fifth National Biomath Conference

ol LR . B " - ()

1F-Yoleaddye B 55 ot 18
320 ozl GAS> > ASD
0 ol Al L) dpam duw 7SS
s o&asls POASI Spdr yiol e AS
328 0Bzl Sl @S 4SS
320 0Bzl S Loyadle iS5
3200 0Bl 3l pagds CBluo ASS
25 o8l e byd SO
320 o8l gl daseo S
320 0Bzl ol yad 1S
3205 o8l Qb dlayge 4SS
o o&adls Qlde 0Ly AS>
56 oBadl LT @3y ynz ASs
3200 o8l Sdus de A8
525 o8l Cang iyl oo 4SS
3005 0Bl olg03l Lo ASS

Ege University of [zmir-Turkey
University of Waterloo-Canada
Harvard Medical School
University of Baghdad

Dr. Ahmet Yildirim
Dr. Mohammad kohandel
Dr. Soheil Rastgou talemi

Dr. Shireen Jawad



Third International and Fifth National Biomath Conference

BBt o fle Bl D
G =BTt '

1F-Yolasisre

B o] s

Presidency University Kolkata of India

Van Yuzuncu Yil University

Maastricht University of Medical Center at the Netherlands

Olgiol (saie ofladls
Olpiol gaiuo oBasls
Ol axiue N AR
Sgne (w93, o&adl>
Ohyasile o&adls

Ol o8&z

3000 o831 (i pe gudige (20 o0& il
CSond 0uSidls

305 S psle oBasls
by o&adls

29l o&ails

Wi Bino 021
BRVRWENY CA{K
ERVRWE. Y SR
Qbbb dedle o8l

SVUSREE CoP) oBidla

Dr. Subhas Khajanchi

Cemil Tunc

Dr. Saeed Ranjbar

4SS5 6 56b Loy 58
Al (£9)50 Ly ASS
le Jgu 5SS
G4l SO

Blag e Al 7SS

&S Layedle 585

Sl opze A

doe G 78

e 59542 S

P Jsd ASS

Cw9d oy (> dosxo ;S
Gd b A8

pladlr dome A8
Cowgd Cd> (Jaiby3 Ao
k> Loydex! 4SS

Bobo Hlubl 58



o 3 Slol ;) Gulen

o - Lo d * J - ‘0. W l ... (@)
e Ve N
Third International and Fifth National Biomath Conference

s Bo SN

Ao A oBLasls 29 Je>9 ASS

35 A9 595 ply 0B adls Gab o iS5
328 419 g8 ple 0Bl G dlpte 78
Oliwls o&auils abay 69T ASs

Cano 9 e o8l Aleis) Orw A
Olygs Sy poke o0& adls Olas Loy iS5
S 5l Pl e 555

35S0 o8l S e Loy ASS

> ‘al.o\ o&isld VRN A8



“c‘rlbhbb}a

SRS R

Third International and Fifth National Biomath Conference

55 08413 5)9lid 9 Jughy Oglas
Sgaa agle 9 bl (92U 0uSLadls ey
o8B adls JueSS i 9 giigal Oglae
ooled oo

Joled 3! s giae

Gioled ! s giac

Sioled gzl Sl giac

Jiled gha! Oha gac

diled gyl Ol giac

Jiled gl Ol giac

Sl gl Ols giac

olan gzl Ol gias

Sl gl Ols giac

Sl gl Ol giac

Jiled gl Ol giac

Gioled (Yl de gazen) damliS oabats 5 dugs Jgions

owlod ol s

s D 8>

Al Udy des dpw 78
S e A
Sk Lsple 585
Wj-ub.g‘ﬁjsa
Sl o33 ASS
G3a3d (o2iye 4SS
Qbey ol ASs
Aleia) o S8
KS9 slgz> Sy

S ol T

o5 gy puigy BT
Gl dogaans ‘w[}
Glgil 1oy BT

ol doguare @315



QO

oy Sleoly (e Soler fpesy 5 (Mdlipe oled (g b il o) g

VEY 313 e ¥ dcd)lez
a8 o sle 5 bl (Bl saSiils o Bl Yoo yerfo
4Ll A¥o—q:ee
(o2 damws SS5) (agee (S o Qreeyores «
=l I b
saass g Sl s YorFor\Y:Fe —,,‘7\
s sl WoFeo)Siee :@_
a3 gl s [PRRITRN El
sy Wiren)Vipe ci
(&S5 Lo plé 155) (oagee Sl ERRYE <
2329 0L 5 (53,555 AT cela %
VPt o3 e F iy =
(Sl grmdoms 555) (sagee (St Quremores
<lei Yorvom)oits
a3 gl ol o Yorfoo)Y:Fe

Sl ol s (paads sla Sl i 5 peealS pale 5 U (Sl 0aSCtils 5l G153 el sla Sl b (olsT 5 S lon (s b

g o S35 el e




QO

(VFor ola o v acid s lez) Sl Jol s gupsle) 4l

a8 o sle 5 bl (Bl saSiils o Bl LARSATR &
(5 \sr,u,,u (ol aaSisls Hlaew 3L1) 4 Lud! A¥e—quee
(Gess dorw 583) (p0s Sl QreeYoroe
=l Yeiwomtoite
Application of Skewed Logistic Modeling for Comparison of Traditional
SUS s and Novel Anthropometric Indices in Discriminating Diabetes: Results of 5- [ 4++\+¥ Yorfe—tyee
year Follow up Azar Cohort Study
031303 9,6 58 ol SLely Hasil ) s 60 Jae OY++04 AR IR S -
Dseesle sl L;.:.A.:Lgxgslf 3hesla lfslﬁ)" sdsSse ud g IR 19:¥e-)):F . (4,,%\
ooms bl s NP P VTP JURVVER S S FEL{IR 999 YOAY [ 1:FeoiYe
o o 5l aslaad b ol oylsmle slo osls 5 Srdy S i 9 (Sl e
S Ll S = J NCARPIL LY BT b S R RO NS R N
(SEJuln (gl
031303 9,6 58 Olays 5 Ladeil 55 Cg ‘5«56\.& osls & 6{.2,3 ol Jﬂ""‘; Zu&:ﬁx)b ay..q¥ 1YY 1Y:F.
The effect of psychological scare on the dynamics of the tumor-immune
sl cp . . 15 SIDH
interaction
S0 gy 3l sl b 19-0 * *5 Is ke Lg gsloans
slas Uy Py R0 33 2 T f{:;:-w »? wﬁ,;:’/} P O3 (b S e Yoot}
S osn S
ol o55e oo e s s & olasl 36 Y7 IR SIS
- . . . . . . . &
S SIE-Cog i gy sleslamal b bl cob o sl L J &Lk, osle ans
OLG? 6":‘“"):" ‘_,Lc USJJ I D 2 ] Jlﬁ' ,. HCAS ) jlw (TN & e R NRRY I Q‘%\
b Jsho ¢330 75 (Jsl 5 55 95 b 29 SO ghe LBl drw g oo o ol
S sl Jsbo cgo5e 5 ¢85 55 b ooy y&. ¢ s Sl = R N
Fobo sl 5 Jisase Sl i Spie
Local radial basis functions to the numerical solution of Volterra integral
Solas Uy . . VALY [ avveoivr.
) equations with delay argument
i Lo, sl b SBSLS, s b g ol s?ab“‘) éjl.w Je YeeslY YorFe—iViee
Getar )T a5,y S8 sl ndly sl esls G BB | Mieeohriye
S e Sitsai) Slem Jan g30s > gl ele (6:55L 58] YOPY | Yo NNfe o
- o 1,80 sl ols 5 ool e pol slasl Ot 5 o0 5 Ca
S ST 055, S s wlew 2S5 Gos o r0ls Sl 5 ol Jubos T RYRRY I Y~
SleWbl S5l b by sagy g
3315 (Shge (S Mg o sl ol e ssls (LT g5l Jae YPeeod [ AYzemyvYe
ol 44l JOES - VO VPP VOG TVRE SR ] B W FYeeF) | ATYeIYFe
L o5k TIRRT N




QO

L] Lgb:@l,‘;’uo
Oy & ol e Jo us oles &l o
Pretreatment of Food Industry Wastewater by Coagulation: Process
S5 Lol , R o BV | AFenipe
Modeling and Optimization using by artificial intelligence
o bls sl BRCALI (5 missense gl <ibyly guw dib gl pilbe 6,80 Jus \Z X0 IRACEIA L (7(,\%\

oL Slg bl S 3 4:.9;([4.]\ Soll aae (Sl s b (5,800 ol C\l.c\ BA+eY] V7:Fe—1Viee
b sl ol 3l oy Pty [ AVireoavia.
Hoaans ol 558 Gie L 1a-wssS sl SEAICR Juse YeooXF [ paecisiye

&

Jslas Shle wags g Lil> aloe DS gy baws Hsa g ady Jae (g20e (g5l acd FeerFA AR S (&%\
soep ol Gasma Bl s Ses Sl VFeefy VP Fe—1Yiee
Effect Of Magnetic, Body Acceleration, And Time Dependency On The

i Lo o . . LS L IR VSR TR

Blood Flow with its Application to Diseased Blood o

2y b S oloy SIR o) Juo S5 s b olas] s osie s gyles Slos
eoxSaloms |70 A A S T AR ER S T vavd | aseoiss g
el soe CD4+T Jslos Jow HIV Cisie > slp Jsp b ) dezsiz ool 5 go0s o FeerdA VP:Fe—1Viee
=l WietViY
(Q‘SJ Lo\ ,”.5:) sosef (& it WiYe—VA:Y.
ol il 5 (635555 e cel




QO

(\on' .>|.>JA ¥ M) )L&:M "3.3 BYS) ‘5.&;0‘.&} 4.«[3_).3

(L?’LG"J}J o> a0 ):S:) (PE g;"f“’“"' Qiee—Yoiee
=y R
wa.a}é Lgl.h@ljﬁu»
Oy & ol e Jo us oles &l o
s 3 o il ol sl ool 5 55 38 5 (e 5B 51 26 sV el ) FEoTY | VerFeoibie
saile 5l s s cosie b 2, K- LK Jae S [ IR AARSSRIE &
Sl SU wage SLlsl las s Jslas et Bl Jo 61w a1 YA-AQ | NYeoNNFe «1(&
2313y 1,25 Sl ssm5 K Senlus Jon QeetY | 1Y £
o3 (o bl 0353 190 0l o 5 S 59d (5505 olo (5L Js \Weesf NESIAS
Sl dba i et 5l aslimal b gl HLaz) gy 2 A R A TSI 2
S e ool Ko Jue sheslial b olsy colls co i 5o ) dblin slo 2oy Coedl sy | FASeYS Yorfe—iNiee
sedls (650 4 e Find New Hypergraph for Polynomials Modeling FEe VA MEZIR S
sl Vg 38yl (5 S IS5 sy 3l eslizial b COVID-19 (58 e (g3 J> Faeaa [y 6‘(&
Modeling the Dynamics of Cancer Stem Cells Using Nonlinear Integro- -
Soarms sdnms , _ . YAso¥ | NFeovee
Differential Equations
515 iy bl iy paeiss SN5 5 #2b) (31-‘ o= Jﬂ.\é)‘ sbol g ol sldue 2350l (o2 pause | Amelrrre
. b i b oy 4 S ot S8 Jilan Comds o0 o B 5 Condy 3ledcwr
o8 o . YYeoof | YeFosiiue
Ol legs gl 5550 5l dox iz ealical
u:\}:l.c \l:J @3)\) (.L.a)u.a LE PN Jl} 03 Core> ngu.).»s‘l*..i) C)l:...al._u "X AR IR
ST ($23ms 250 ol gloys 53 8by 53l oo 5l s w500 120 2 S IRKTE ST Ou
Csly ad 0 Study on the behavior and control of a chaotic HIV-1 system A ARRATA B S R L~
National sl 55 500 o D el Cuns (Higw 4o bLS
Ssmzn olas] aw ool Jebos 5 58l D e A G IR PWUCIN T 2 2
Y- A-Y- -4 sl ;s Health and Nutrition Examination Survey
LbJ“Mﬁ &1, 4l
sS4 Jie ol g Jlw o8 ol
L”gj.a.:é 0:13‘ ol (J.Luﬁ) g‘..AC Lfb’ &.‘2 aslad L Lf”b ‘:th asls J:J.;u" FaefY )‘ NF.Y b'é).o ¥ ‘M
IR Sy Mg oeile (5L LIl s Olem Hleaady laesls (Salos k5, olubis VeeAY Voi¥e I cel

eles 0L




O . - »
G B T T i — e .gg@ T

Third International and Fifth National Biomath Conference Lo
WV SEa . ot




Third International and Fifth National Biomath Conference
h‘d“'oh:!:}a

Contents English Papers

PUDLIC LECTUIES et e e e e e e 1

Numerical Approximation based on The Bernoulli Polynomials for Solving HIV infection
Of CDA4+T cells model .....o.noi e, 2

Hamideh Abdollahi Lashaki
A prey-predator model with infection IN Prey .......oovviiiiiiiiiii i, 7
Mahnaz Abedini

An analysis of legal and social issues affecting mathematical models of disease control;
some complex features of information processing ............c.ooveiviiiiiiiiiiiiiiiieinina.ns 12

Roozbeh Aghaieebeiklavasani
The Biomathematics, modelling of populations developing drugs resistance ............... 17
Leila Alizadeh

Numerical Solution of a Fractional COVID-19 Model Using the Fractional Legendre-
Picard Iteration Method ... 21

Soheyla Ansari

Local radial basis functions to the numerical solution of Volterra integral equations with
delay argUMENT ...t 26

Pouria Assari

Simulation of Antiviral Drug Treatment Dynamics on COVID-19 Spread Using the Local

Meshless Galerkin Method ... 31
Pouria Assari

Survey To Epidemic Modeling ...........ccooiiiiiiiiiiii e, 35
Aynaz Darbay

Simulation of thebehavior of cancer cell invasion of surrounding tissue using direct mesh-
less local Petrov-Galerkin method ........... ... 39

Ali Ebrahimijahan



Dynamics of Infectious Diseases: Exploring Bifurcations in a Discrete-Time SIR
Epidemic Model with Logistic Growth ... e 44

Zohre Eskandari
Numerical simulation of tumor growth model by the conservative finite difference method
Mahdiehalsadat FAzayel .........ooiiiiiiiiitt ettt ettt e ettt ettt e e, 49

Trajectory optimization and costate estimation of fractional optimal control problems via a
M untz pseudospectral method: application in cancer treatment ............................ 54

Hussein Ghassemi

Application of Skewed Logistic Modeling for Comparison of Traditional and Novel
Anthropometric Indices in Discriminating Diabetes ..............coooeviiiiiiiiiiiiiinn.... 59

Neda Gilani

Effect Of Magnetic, Body Acceleration, And Time Dependency On The Blood Flow with

its Application to Diseased Blood ............cooiiiiiiiii 64
Ahmad Reza Haghighi
Mathematical model of cystic fibrosis pulmonary disease and air flow in the lung ....... 69

Fatemeh Hasanzadeh

Dynamic Behaviour of a Cancer TUMOT ..........oouiiiiiii i 74
Zahra Hasanzadeh

Generating pharmaceutical molecules using deep Learning ....................coovviiinn.o 78
Sanaz Hashemipour

Modeling and forecasting of rainfall from satellite data using radial base and generalized
regression neural NETWOTKS ... .....oiii i e 83

Nahideh Hossein Babazadeh

Influence of Backward Bifurcation in a Model of Tuberculosis .............................. 87
Azizeh Jabbari

Real Data Feedback to Control Thyroid Behavior ...............ccooviiiiiiiiiiiii .. 92
Arta Jamshidi

Global dynamic of generalized viral infection model with two transmission mode, cure
rate, latently infected cells, cellular immunity and humoral immunity ....................... 96

Tohid Kasbi Gharahasanlou

Machine learning model for classifying BRCA1 missense variants ........................ 101



Hamed Khayyateh Ajami

A new gene selection approach for Alzheimer’s disease ............cccoovviiiiiiiiiiniiinn 106
Hamed Khayyateh Ajami
SEAICR model for Covid-19 via Caputo derivative .............ccooviviiiiiiiiiiiiinneannnns 110

Behnam Mohammadaliee

Modeling the Dynamics of Cancer Stem Cells Using Nonlinear Integro-Differential
EQUations ..o e 115

Saeedeh Mohammadi
Find New Hypergraph for Polynomials Modeling ..., 120
Marzieh Moradi Daleni

Machine learning algorithm for the numerical solution of the epidemiological disease
MOAE] . 125

Sima Naraghi
Study on the behavior and control of a chaotic HIV-1 system ............................. .. 130
Marzieh Pabasteh

Investigating the importance of coping strategies in predicting mental well-being by using

random forest model ... ... ..o 134
Abbas Pak

Bifurcation Analysis of Infectious Disease Model with Delay .............................. 139
Khayyam Salehi

A novel method for solving quasi-equilibrium problems in Hadamard space ..............143
Mahdiyeh Shaker Sar

Radiomics: Transforming Medical Imaging into Quantitative Data for Enhanced Diagnosis
and Treatment .........ouii i 147

Kosar Tarvirdizade

Deep Learning Model to Diagnose Diabetic Retinopathy .................c.ooo 151
Kosar Tarvirdizade

A modification of synaptic learning rules in bio-inspired spiking neural networks ....... 155
Fatemeh Tavangarian

Pretreatment of Food Industry Wastewater by Coagulation: Process Modeling and
Optimization using by artificial intelligence ...............coooiiiiiiiiiiiii e 160

GholamReza Zaki



Third International and Fifth National Biomath Conference
IF-Yoladidye B ] S

‘s.w)lé oY o WJ.Q.'B

ol pl oo

VY s o SBF LS, o b e b b Gl Joe
st Lo 0]

VYO Ol 2L ol o ol § 03 638 Syl o8 g, 5 cBb eV Lasl oy
9>y B

YV Qs sessase s LYz basil jleolawl b g lew jLactl 0gy gy p
Slie dla

A E et mas sl aSh oolaiul b b glaools s
S a8 gl o

VAN st Sl ployo o Lol g5l Jow 5l pledigas

Sl $8gras 1 0

Y s oy el bl y bools g bl (s5le Joe
035 (S S
VAZ e Ol (6 ,50L Ll (6 alwg 4 (g Lol — 0l o ools  Slipo s, slulis

29 Ry (9

Ol (o2l ez S8ty 0yejg; (S g 22k psle om bl bl 5 (LSb ildan (el )

Sy 00l Cawgs dobold



Third International and Fifth National Biomath Conference

IF-Faladto,e IR
du o| * o

28y deas ASS

Dr. saeed Ranjbar
Maastricht university of Medical center at the Netherlands
Qi Olgie

How one can make a bridge from advanced mathematics to medical science?

S Lapdle S5 B
Dr. Gholamreza Rokni
Olygs 0851 ode b guns
QS Olgie

Theoretical Biology: Mathematical and Relational

AY)g) s> dosee 4SS B
Dr. Mohammadhossein Roozbehani
Ol Cariuo g o 0KESIS (ols O guac

‘A o\y.;

S 9 Cuodlew Sz L3l 0 (F5ina0 9 U ool S Huldo ]

1



Third International and Fifth National Biomath Conference
IF-Foladidre

MATHEMATICAL)

Numerical Approximation based on The Bernoulli Polynomials for
Solving HIV infection of CD4+T cells model

Hamideh Abdollahi Lashalki!
Department of Mathematics, Faculty of Mathematical Sciences, Farhangian University, Mazandaran, Iran.

Mojgan Akbari
Department of Mathematics, Faculty of Mathematical Sciences,University of Guilan, P.O.Box 1914, Rasht, Iran

Abstract
In this article, an applied matrix method, which is based on Bernouli Polynomials has been presented

to find approximate solutions of the mathematical model describing HIV infection of CD4+T cells. The
proposed approach is validated through numerical experiments and compared with existing methods to
demonstrate its efficacy and computational efficiency.

Keywords: Bernoulli polynomjals, Approximation, HI'V infection model
Mathematics Subject Classification [2010]:  65R20, 65R99

1 Introduction

The Human Immunodeficiency Virus (HIV) remains a significant global health challenge, with millions of
individuals affected worldwide. Understanding the dynamics of HIV infection within the immune system is
crucial for developing effective treatment strategies. Mathematical models play a vital role in elucidating
the complex interactions between the virus and immune cells. Consider the HIV infection model of CD4+ T
cells, characterized by a system of nonlinear ordinary differential equations (ODEs) of the following form|5]

dT T+1

—=p—aT +rT(1 - i ) —kVT

dx mazx

I

d—:kVT—BI

dx

dv

— = NBI — A~V 1
i - NP (1)

With physical conditions I(0) = 0,7°(0) = 0.1,andV (0) = 0.1, T(x) represents the concentration of
susceptible CD4+4 T cells, I(x) represents CD4+T cells infected by the HIV viruses, and V(x) is free HIV
particles in the blood. «, 3, and ~ reflects natural turnover rates of uninfected CD4+T cells, infected CD4+T

I
+ ) denotes the logistic development of the healthy CD4+4T

max
cells. k is the positive real number representing the infection rate; kVT describes HIV infection of healthy

CD4+ T cells. The maximum CD4+T cells in the body are denoted by T},4.. Here, we set values for each
parameter as follows, p = 0.1,a = 0.02,8 = 0.3,r = 3,7 = 2.4,k = 0.0027, T,a = 1500, N = 9. Since,
last decade, several numerical approaches were utilized to solve the HIV infection model of CD4+T cells.
For instance, the Bessel collocation method [8], Differential transform technique [10], Multistep differential
transform method [3], Homotopy perturbation technique [2] ,Modified Bernoulli wavelets [5] etc. Bernouli
polynomials play a main role in a variety of expansions and approximation. We propose a numerical
approximation method based on Bernoulli polynomials to solve the differential equations governing the
dynamics of HIV infection.

cells, and virus particles, respectively, (1 —

1Speaker
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1.1 Bernoulli Polynomials
The Bernouli polynomials of order m, are explained in [4] by
Batw) = 3" (") fran o)
i \! 7

where ;,7 = 0,1,...,n are Bernouli numbers. These numbers are a sequence of signed rational numbers,
which are obtained from the series extension of trigonometric functions and can be described by

t —
et —1 :ZBJ; ®)
7=0
The first four Bernouli numbers are
-1 1 1
= 1 = — = — —_
ﬂo ) 61 9 52 6’ /84 30’
with Bo;41 =0, ¢=1,2,3,---. The first four Bernouli Polynomials are
1 ) 1 s 3., 1
By(z) =1, Bi(x)=x— =, Ba(z)=2"—z+ -, Bs(x)=2"— -2+ -z.
2 6 2 2
The subsequent features apply to Bernouli polynomials [6], [9]
By(0) = B, n =0, (4)
(5)
! Bpni1(x) — Bnyi(a)
B, (t)dt = : 6
| B = ()
(7)
B Ba(t)d pymet ! 1 8
m t n t t =(-™ ) 9 > )
| BB = 0m ®
(9)
and
> Bi(t) = (m+ 1)t (10)
=0

It can be simply illustrated that any supposed polynomials of degree n can be extended with regard to linear
combination of Bernouli polynomials as

p(z) = Z cxBi(x) = CTB(x),
k=0

where C' and B(xz) are defined by
C = [co,c1,y ey Ca] (11)

and
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k k k k
k k k k
By(x) = (k) By + <k v 1) Be_ 1z + ... + <1>lek‘1 + (0> Boz*,

for kK =0,1,...,m, therefore

where

where

B(z) = MT(x), (13)
where
T=[1 z 2* ..2", (14)

and M is a lower triangular (n + 1) X (n + 1) matrix has the form

Bo 0 0 0 0 ... 0
Ge G o o 0 0

vo| @B @B @B 0 0 o o 15)
OB @B @B QB 0 oo
B (0Bt (B (B o (DB |

and det(M) =1, then M is an invertible matrix. Using (14), we have

T(x) = M 'B(x). (16)

1.2 Approximation of functions

Suppose that H = L?[0,1] and {By(z), Bi(x),--- Bn(z)} C H, where B;(z)’ s are Bernoulli polynomials
and

V = span{By(z), B1(z), - By(x)},

and f be an arbitrary member in H. Since V is a finite dimensional vector space, f has the unique best
approximation f € V, that is

VeV, |f=fl<If-ul

Since f € V, then there exists the unique coefficients fy, f1,- - fx such that
N
faF =" faBule) = FTB(), F=1[fo.fr. fn)- (17)

n=0

Theorem 1.1. [7] For vector B(t) defined in (13), the following formula is defined

/w B(t)dt ~ PB(z), (18)
0
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where P is the (N + 1) x (N + 1) operational matriz of integration, which is obtained from P = UM™!,
where

U=1[U,U,,.. Uy, 2 M|,

1 { 1 ? 1/ 1
—1

By11(z) — Bn41(0)
N+1

The operational matrix of integration P is a sparse matrix, for example, for N = 3, we have

and

~ ZTB(x), E can be computed by (17).

and Z = [c1, ca, ..., cn]T which

_1 —
— 1 0 0
2
—1 1
— 0 = 0
12 2

P =
0 0 O 1
3
1 —1
L o9 Y 11 Y

It is not difficult to see that the operation matrix P as N increases, becomes more sparse. This is one of
the advantages of using Bernouli polynomials for solving equations.

2 Description of Bernouli matrix method

for solving the proposed HIV infection of D4+T cells model. first, we can approximate the unknown function

d—Tﬂﬂb Bernouli matri
I de’ do v Bernou atrix as

T dl T 4% T
— =A'"B(z), —=C"B(z), — =D B(x) (19)

which A, C, D are the unknown vector. by using theorem (1-1) we have T'(z), I(x), V (x) based on operational
matrix P, by replacing them in (??), we have

_ ATPB(z) + C"PB(x)

ATB(z) = p — aATPB(z) + AT PB(z)(1 )

Tma:p
— kCTPB(2) AT PB(x)
ATB(z) = kCTPB(x)AT PB(z) — BCT PB(x)
DTB(z) = NgyDTPB(z)DT PB(x) (20)

2i—1

Now we collocate (??) with the following grid points ¢; = SNTT)? i=1,---,N 41 then we have a system
of nonlinear algebric equations, with unknown vector A, C, D, we can solve nonlinear system of equations
with fsolve function in matlab and approximate the T'(x), I(x),V (z).

3 Numerical Examples

Consider (??) With physical conditions I(0) = 0, 7(0) = 0.1 and V(0) = 0.1, with the following values,
p=01a=002p=03r=37=24,k=0.0027, T qr = 1500, N = 9. The comparison between the
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model

Table 1: Numerical comparison for T'(x), I(z), N (z) with different methods
presented method Bernoulli wavelet [5] Haar wavelet [1]
T(x) 0.1000000000000 0.1000000000000 0.1000000000000
I(x)  0.0000000000000 0.0000000000000 0.0000000000000
V(x)  0.1000000000000 0.1000000000000 0.1000000000000

results of presented method for N = 4 and some other methods are shown in tablel. The results obtained
from this method show no significant different from those of other methods, but it boasts enhanced usability
and notably reduced computational complexity compared to its counterparts.
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Abstract
In this article, we study the behavior of a dynamic system that has one prey and one predator, so
that one of the prey is diseases. Our goal is to find the equilibrium points and check the stability of the
equilibrium points.
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1 Introduction

Dynamic systems are used in ecology, they are defined by the interactions of species with each other and their
environment, which determine population and community structure. Hunting is one of the most important
interactions that affect the qualitative behavior of all species, for this reason, the predator and prey system
is one of the most important topics in biological mathematics.

The simplest model for the problem of prey and predator was first presented by Lotka Volterra in 1926[1, 2].
After that, prey-predator models were widely considered. Since the biological population also suffers from
various diseases and this disease plays a significant role in regulating the population size. Therefore, many
scientists and mathematicians started working in this field, and it can be said that the effect of the epidemic
or disease on hunting was first studied and investigated by Anderson and May in the reference(3, 4].

Other models were also introduced with disease, for example: study disease in prey [5]. Hunters only
consume infected prey [6]. Predators avoid infected prey [7].It can be mentioned [8], where both prey and
predator populations are affected by the disease. In this paper, we study a population model with one prey
and one predator. The populations prey has two sub-classes: susceptible and infected. So our system has

six equilibrium points, two of which are unstable and the rest are stable.

Definition 1.1. The point £ € R™ is an equilibrium point for the differential equation
dx
- f()
if f(z) =0 for all t.
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Definition 1.2. The equilibrium point ¢ is said to be stable if givene > 0 there is a 6 > 0 such that
llo(t,p) — q|| < O for all ¢ > 0 and for all p such that |[p — ¢|| < . If 6 can be chosen not only so that the
solution ¢ is stable but also so that ¢(t,p) — q as t — oo, then ¢ is said to be asymptotically stable. If ¢

is not stable it is said to be unstable.

2 Main results

In this paper, we study a population model with one prey and one predator. The populations prey has two
sub-classes: susceptible and infected. At time T; let S(T) denote the density of the susceptible prey, and
I(T) denote the density of the infected prey. The predator densities are denoted by X(T). Now we discuss
the basic assumptions that we have made in formulating the model.

1. In the absence of predator population and with no disease, the prey population grows logistically with
intrinsic growth rate r and environmental carrying capacity K(K > 0).

2. Susceptible prey gets infected in contact with infected prey.

3. By consuming infected prey, the hunter does not become infected.

According to the above assumptions, we have three nonlinear ordinary differential equations as follows:

Z—i =rS(1— %) —bSI —cSX
%:dlebSI—eIX—fI (1)
% =—gX +cSX +elX
with the initial population
S(0) >0,1(0) > 0,X(0) > 0. (2)

Next, we obtain the equilibrium points of system(1), which has three disease-free equilibrium points and

three endemic equilibrium points. Therefor three disease-free equilibrium points as follows:

_ _ _ (9 o rlck—g)

El — (07070)7 E2 - (k,0,0), E3 — (0707 021{5 )

And three endemic equilibrium points as follows:
Ey=(0,= By = (— FEg=(S"1",X
4 ( L )7 5 ( b b(bk+T) 3 ) 6 ( Ly )
Where

g _ bgk + cdk — cfk — ekr + gr
N r(c—e)

I _begk + c*dk — ¢ fk — cekr 4 egr
N er(c—e)

x* b2gk + bedk — befk — bekr + bgr + cdr — cfr — der + efr

er(c—e)

In the following, we check the stability of the equilibrium points using the Jacobian matrix.
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2.1 Stability Analysis

The Jacobian matrix J(S, I, X) of system (1) at any pont (S, I, X) is gvein by:

A —%—bs —cS
JE)= bl bS—exX+d—f  —el | (3)
cX eX cS+el—g
where
S+1 rS
A= (1—T)—?—bI—CX

The local asymptotic stability of each equilibrium point is studied by computing the Jacobian matrix and
finding the eigenvalues evaluated at each equilibrium point. For stability of the equilibrium points, the real

parts of the eigenvalues of the Jacobian matrix must be negative
Theorem 2.1. E; = (0,0,0) unstable.

The Jacobian matrix at £ given by

r 0 0
JE)=|0 d—f 0
0 0 —q

The corresponding eigenvalues are r,d — f, —g; since > 0 then F; unstable.

The Jacobian matrix at E9 becomes

—r bk —r —ck
JE)=| 0 bk+d—f 0
0 0 ck —g

The corresponding eigenvalues are —r, ck — g and bk + d — f. Then we have the following theorem for Ej.

Theorem 2.2. Fy = (k,0,0) is locally asymptotically stable if ck < g, bk +d < f.

r(ck — g)

2% ) are

The corresponding eigenvalues at F3 = (%, 0,

—rg +\/—4c29k2r + 4cg?kr + g2r?

A= 2ck
Ny — g +\/—4c2gk2r + dcg?kr + g2r2
2ck
bgck + dck — fc?k — cekr + egr
As = 2k

Then we have the following theorem for FEj.

Lk —
Theorem 2.3. E3 = (£,0, u)

5 1s locally asymptically stable if
c?k

—4c2gk%r 4 4cg®kr + ¢*r2 > 0
bgck + dc*k — fcPk — cekr + egr < 0.
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d—
The Jacobian matrix at £y = (0, £ 7f) given by
e

ek be e 0 0

J(Ey) = ;g 0 —g
c(d—f)

. d—f 0

The corresponding eigenvalues are

bgk + cdk — cfk — ekr 4 gr
M=vV=dg+fg, Ao=—v=dg+ g Ng=-" ! Z.

Theorem 2.4. E;y = (0, 2

9, ;f) unstable.
e

The Jacobian matrix at Eg = (S*,I*, X*) given by

ailp a2 ais
J(E6) = asy 0 a3
a1 azz 0

where

a11 = (((=d + f)e —bg + er)k — gr)/((c — e)k)

(bk +7)((—er+ (d— f)c+bg)k + gr)/((c — e)kr)

(k(d— f)c+ (bg —er)k + gr)c/((c — e)r)

as1 = —b(k(d — f)c* + (bg — er)kc + egr) /(er(c — €))

asz = (k(d — f)c + (bg — er)ke + egr)/((c — e)r)

(d—fle+ (—ek+g)b—e(d— f))r +b((d— f)c+ bg)k)c/(er(c —e))
(—ek+g)b+(d— f)(c—e))r+b((d— fle+bg)k)/((c—e)r)

a12 = —

aiz =

After simplifying, the characteristic equation of the Jacobian matrix J(Eg) is as follows:
A — a11A\? — (ar2a21 + a13a31 + agzazi) A + ar1a3as2 — a12a23a31 — a13az1azz = 0
where
A1 = —a11, Az = —a(12a21 + a13a31 + az3a31), Az = a11a23a32 — A12023031 — 13021032
By Routh-Hurwitz’s criterion, the characteristic equation (4) has negative eigenvalues if,
Ay >0, Az >0, A1As > Ag

Then if condition(5) is satisfied, the equilibrium point Fjg is locally asymptotically stable.
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Abstract

In this paper, we investigate how mathematical models in epidemiology are associated with legal and
social issues. Such linkage will enable us to address some elements in different cases, like the interplay
between negative and positive rights in disease control, the impact of quarantine, and some complex
features of information function in assessing the dynamics of disease, which have been unaddressed. A
deeper look into the behavior of our system will shed light on finding optimal solutions to address both
healthcare and legal issues.

Keywords: Decreasing Information processing, Isolation, Dynamical systems, Legal issues

AMS Mathematical Subject Classification [2010]: 91B14, 92D30

1 Introduction

It would be impossible to address mathematical epidemiology models without considering different elements
highlighting the impact of legal and societal issues. One can exemplify the role Media outlets often take in
affecting disease dynamics. The psychological consequences of Media reporting can highly overshadow the
process of decision-making concerning disease control both on the regional and global levels. A retrospective
analysis of governments’ response to healthcare crises throughout our history shows factors like overfear,
political misuse like Xenophobia, and underestimation of a particular disease can harm attempts at over-
coming pandemics [?]. Making a connection between human behavior and disease control is facilitated by
the fact that people can alter their responses regarding pandemics [?]. This approach, called behavioral
epidemiology- has some implications for our understanding of pandemics and diseases through the lens of
mathematics. For instance, the effect of infected people in a given society during vaccination reflects the
complexity of human nature, and thus, our approach should be evaluated as such [?], [?]. The caveat here is
the extent to which efforts to surmount a pandemic cause the law to get into the act. The balance between

individuals’ rights (negative rights) and the viability of healthcare-related decisions benefiting society as a

1Speaker
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whole (positive rights) is not an easy task to carry out. During the COVID-19 pandemic, many govern-
ments straddle the two sides, and some legal challenges and cases arose due to this inevitable imbalance [?].
Therefore, the abovementioned efforts to infuse our model with these themes bring more accuracy to our
analysis. In this paper, we extend an analysis of the role of information processing in epidemiological models
by adding the legal aspects of non-pharmaceutical in the model to contribute to the existing literature on the
multidimensional characteristics of social issues. Such analysis divulges multistability in the disease-inflicted

equilibriums of our model, leading to more complexities in higher dimensions.

2 Modeling

To address the problem we laid out above, we extend the model presented by [?]. Our goal is to show
how the relationship between the process of information in both non-pharmaceutical and pharmaceutical
prescriptions and the legal and societal aspects of these solutions are highly intertwined. The information
we process is not necessarily increasing over time. On the contrary, we can trace the signs of overlooking
problems. On the other hand, turning a blind eye to the comprehension of different trends in various societies
and communities is also misleading and can result in undermining authorities’s efforts. To extend the model

we have

S=a(l-S8)—BIS—p(M)S+nA, (1)
A=p(M)S — (a+1n)A, (2)
I (3)

(4)

Here, S, A, and I correspondingly represent the number of Susceptible, Isolated, and Infected individuals
in a Society, M represents the information index 2, and ¢(M) = ep(M) for small positive 0 < ¢ < 1. To
carry out stability analysis we have S=A=1=M=0. Then

SzO%pM@:T%mﬂ—S%ﬁﬂS+m®, (5)
A=0p(M)= g (a0 A, (6)
f:UA@MQ:%«w+u+aﬂ—ﬁwL (7)
M=0— M=g(I). (8)

By doing some simple substitution we have:

A;:<W+§?:2;BS>& ¥
I:;‘S((l—S)—(“Jr“e;;i)z)_ﬁy), (10)
oo (09 - SHEET) =

20r negative feedback

13
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Then, we have

p(M):%(a—i—n)A:e’l((w—ku—ka)—ﬂS), (12)

p(g(I)) = € ' ((w+ p+ @) — BS). (13)

As we noted above, in this paper, we discuss different types of information processing functions by which
individuals adopt a non-monotonic function regarding information about pharmaceutical and pharmaceutical
measures. It is worth noting that our option reflects the complexity of the information index in a disease-

inflicted community. For this case, we can use the general function

nM? +mM +

M) = 14
pla) = " (14
In order to find equilibrium points we use p(M) as
— information curve
Figure 1: General non-monotonic information processing
2
ng=(I) +mg(I) +~v
1)) = 15
The fixed point problem will be
2
ng* N +mgH)+y _
=c w4+ p+a)—pB5S), 16
() +1 (w+p+a)—BS) (16)
or equivalently
u(S) v(S5)

(n— e H(w+p+a) —BS)> g*(I) +mg(I) + <7 —e ((wHp+a)- 65))) =0. (17)

By solving quadratic equation we have

g(I) = _ZUES) (m + /m2 — 4u(S)v(S)>. (18)

The function g(I) is increasing and saturated with g(0) = 0. Then we use exponential function g(I) =
1 — ¢! for ¢ > 1. Finally we have:

S
1—¢ ' ( ) 2 _2u15) (m + \/m2 — 4u(S)v(S)>. (19)
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We let
k2| (1-9)- (w+u+a)5—552>
BS e(a+n) 1
Dy:=1-— < — 2_4 2
=1 + guts (m = Vi TEE) ), (20)
2
s <<1S><“+1T:li>‘“ 1 .

Then, the zero-level of Dy and Dy curves in (D, S)—plane determines the equilibria. For the biological
meaningful solutions of D1(S) = 0,D2(S) =0, weneed 0 < S < (w+ p+ «)/f, and 0 < A < 1 — S which
implies 43 > €(n + «) (1 + “E’(J;Tog‘f Based on variations of parameters, the typical form of these functions
are illustrated in Figure (2).

14

12

10

0.8
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Figure 2: Curves of D1 (red) and D2 (blue). For a = 0.01, 5 = 0.96, w = 0.29993, a = 0.13, n = 3, m = 0.1,
k=4,¢e=0.772, n=pn=0.23, v =0.33, and { = 3.

3 Conclusion

We have concluded that the social impact of the regulatory policies set out by authorities may lead to the
leakage of infectious members of the society and thus worsen the epidemic condition by creating a multi-
stability situation. We have investigated the occurrence of extra infectious equilibria which may be left
unnoticed due to neglecting the social effect of imposing the law. There are the possibilities of folds, cusps,
pitchforks, and Hopf bifurcation. Thus, the system has the potential to suffer chaos. The stability analysis

of equilibria needs separate comprehensive studies.
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Abstract

The main motivation which led us to work with Biomathematics is that we could understand some
mechanisms of biological phenomena using techniques which came from Mathematics. This existing
interface between Biology and Mathematics, characterized by a great contact range, experiences a process
of fast-track deepening nowadays.
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1 Introduction

The contemporary Biomathematics can be classified in three distinct branches concerning methods and
approaches: the traditional interface offered by biophysical and biomechanical issues; the most recent one
dedicated to the genomic analyses and a third one called Population Dynamics. The field of greatest emphasis
in the IMECC graduate programs was directed to the Population Dynamics which, in its broader meaning
encompasses the study of population of molecules, cells, micro organisms, higher organisms, diseases and
human societies. The synthesis and the foundation of this broad line of research proceed from a variety
of mathematical models described by variational equations: ordinary and partial, continuous and discrete
differential equations and afterwards, variational equations which envisage the subjectivity of parameters
and state variables (fuzzy systems).

The use of Mathematics in the formulation of biological laws is still in its initial stage if compared to
the development and use in the Physical Sciences; however, in the past years, along with the evolution of
the computer sector, it has demonstrated to be a crucial tool in cutting-edge research in several fields. The
practical models which involve inter-relationships of a great number of variables are formulated through
equation systems with countless parameters. In these cases, an analytical treatment is usually impossible
and the resolution qualitative methods must be used, which favors the computational resolutions. And, the
more complex or realist the model is, the more difficult it will be to statistically show that it describes the

reality!
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The first Biomathematics paper at a master’s level that we assisted took place as a partner in the FUEL
postgraduate program it was a dissertation about the dynamics of biodigesters.

The Biomathematics at the IMECC was considered as a field of research of applied mathematics just in
1990.

papers presented can be gathered in two main topics: Dynamic Population Systems (Optimal control
of tumors and bacteria, dengue evolution, resistance to fungicides and enzymatic kinetics) and numerical
analysis of parabolic-hyperbolic PDE (river and sea pollution, hemodialysis and potato drying).

The Biomathematics group began, then, to develop integrated research projects: “Growth and Treatment
of Cancerous Tumors”, “Mathematical Modeling for Medicine Optimization in Cancerous Tumors”.

We believe that the reason for the active continuity of this group is the result of modeling in biological
processes supported by instruments resulting from the Fuzzy Theory.

The first Biomathematical paper using fuzzy logic arguments occurred when we used, along with Herib-
erto, the structure of a foundation of fuzzy rules to study the process of medical diagnosis of childhood

diseases.

2 Initial discussion

The Group published some texts which became essential for those who intend to research in Biomathematics
and/or Fuzzy Logic: “Differential Equations with Applications”, “Theory of the fuzzy sets with applica-
tions”, SBMAC - Notas em Matem “atica Aplicada, Vol.17, 2005; “Topics of Fuzzy Logic and Biomathemat-
ics”.

“The First Course in Fuzzy Logic, Fuzzy Dynamical Systems and Biomathematics - Theory and Appli-
cations”.

In 1989, Professor Lee. A. Segel from the Weizmann Institute in Israel, one of the most renowned
biomathematician in the world, was present, as a guest of the Group, and he lectured several times empha-

sizing the research in Biomathematics.

2.1 Mathematical Modeling for tumor growth and the problem of cellular resistance
to antiblastic drugs

This work demonstrated the importance of pharmacon resistance from spontaneous mutations, as an intrinsic
property of a tumor. The formal mathematical models show in this context different factors which can
influence the efficacy of chemotherapy, such as tumor size, degree of cell resistance at the initiation of
therapy, therapeutic program, the frequency of mutations resistant cells, tumor kinetics, etc. The results
that were obtained suggest directions to be taken by therapists for the best choice of chemotherapy of
its program, which is usually done empirically. The proposed model initially considersC: tumor cells; S:
sensitive cells; Ri: cells resistant to the first drug and Rs: second drug resistant cells.

dsS
T
dR;

W:rRl(l—k:N)—l—oqu(l—kN)—agrRl(l—kN) 0

rS(1—kN)—a1rS(1 —kN) — asrS(1 — kN)

d
% =rRo(l —kN) + asrS(1 — kN) — asrRa(1 — kN)
dR
de = rRyg(1 — kN) 4 agrRi(1 — kN) — a1rRy(1 — kN)
\
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Ry

2 N2 N—Otl-‘raz
N

Ry _ _
DN N aytasg
N

In this paper, models with A and B alternative therapies having immediate effects and effects at fixed period

intervals were also analyzed.

% =rRi(1 - kN)+a1rS(1 — kN) — agrRi(1 — kN) — Fp(t) R
% =rRy(1 = kN) +azrS(1 — kN) — aorRe(1 — kN) — Fa(t)Rs
% =rRq(1 = kN) + agrRi(1 — kN) — airRa(1 — kN)

Simulations carried out show the therapeutic advantage of using a program of alternate drugs over the

mono-chemotherapy.

2.2  Optimal chemical control of populations developing drug resistance (Michel I.
da S. Costa, J. L. Boldrini and R. C. Bassanezi) - IMA Journal of Mathematics
Applied in Medicine & Biology, 1992.

A system of differential equations for the control of tumor cells growth in a cyclenonspecific chemotherapy
is presented. Drug resistance and toxicity are also taken into account. The aim of the control is to minimize
the final tumor level and the toxicity. The analysis resorted to the Optimal Control Theory and the
results showed that maximum drug concentration featured in all treatments - in some cases it was the sole
optimal strategy. Treatments dependent on tumor level were also optimal whereas alternating maximum
drug concentration and rest periods proved to be suboptimal or an alternative strategy when there is no
optimal solution. Specifically, the considered model is given by the following systems of ordinary differential

equations:

dii =yf(y) —ult)g(y — )
z(0) = z0;y(0) = yo

”Optimal chemotherapy: A Case study with drug resistance; saturation effect and toxicity”.

3 conclusion

From this two-way process, not only basic Biology issues have been solved, but also new lines of research in
Mathematics have arisen and taken on a life of their own. Moreover, it is important to notice the emerging of
new fields in Applied Mathematics, such as genetic algorithms, neural networks, sociobiological algorithms,
fuzzy logic, etc., which we could call Biological Mathematics since, in many cases, they owe their basic

concepts to Theoretical Biology.
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Numerical Solution of a Fractional COVID-19 Model Using the
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Abstract

This paper focuses on a numerical approach for solving nonlinear fractional differential equations using
Picard’s iteration method combined with shifted Legendre polynomials, known as the fractional Legendre-
Picard iteration method. Towards the end of the paper, numerical approximations of a fractional COVID-
19 pandemic model are presented to demonstrate and validate the proposed method. The numerical results
indicate that our method is efficient.

Keywords: An epidemic model of COVID-19, Shifted Legendre polynomials, Legendre-Picard iteration
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

In the past few decades, there has been significant progress in fractional differential equations (FDEs) due
to their applicability in various fields of science and engineering [1, 2]. FDEs offer an advantage in modeling
real-life phenomena as they help reduce errors that may arise from ignored parameters. There are numerous
examples of mathematical models in biology, physics, natural sciences, and other fields of science that can
be effectively represented by FDEs such as the fractional-order COVID-19 model [2, 5]. It has been observed
that obtaining analytical solutions for systems of FDEs can be a challenging task and, in some cases, even
impossible. Therefore, the development of efficient numerical methods is essential for studying the solutions
of these equations. Researchers have recently achieved various approximate methods for the numerical
solution of systems of fractional differential equations, such as spectral Galerkin method [2], Computational
method [1] and Adams-Bashforth method [5]. One of numerical techniques used to solve FDEs consists of
semi-analytical methods [6]. Picard’s method is a simple yet efficient semi-analytical technique that can
be employed to solve a wide range of FDEs [6]. Picard’s method is a frequently used approach for solving
equations but can have difficulty with non-linear problems. In this research, we utilized a combination of
shifted Legendre polynomials, the Legendre-Gauss quadrature formula, and the Picard iteration technique.
This allowed us to develop the Legendre-Picard iteration method (LPIM) to solve nonlinear fractional
integral equations. First, we recall some basic concepts.

Definition 1.1. The analytic form of the shifted Legendre polynomial on the interval A = [0, L] is defined

as:
n

. )" *T(n+k+1
L@ =2 (r(k;)+ 1)(7(z = k)!k:!L’z‘Tk' o

k=0

1Speaker
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Hence, the orthogonality condition is

L

J L@ @de = (Gt o,
where, 0, is Kronecker delta function. Thus, for any function
[ee)
g(z) = gilLi(x),
i=0
where the cofficients g; are given by
2i+1 [
gi = ZZ / g(x)L; (z)dz, i=0,1,2,---. (2)
0

The integral of Equation (2) can be calculated numerically using the shifted Legendre-Gauss quadrature
rule as:

2

N
+1 .
gi(x) =~ — > gL (w)w;,
=0

where

L
and {t; }é\fzo are zeros of Lyy1(z) and {w; }§V:0 are corresponding weights introduced in [6] as

2
(1 = 23) Ly ()
(2N +2)

= > ]:07177N
(N + 1)L (t;)Liy 44 (t5)

Wi =

Definition 1.2. For a function say y(t) we define fractional integral (Riemann-Liouville fractional integral)
corresponding to ¢ as

x
Iy(a) = —— / (x — 1) y(r)dr, >0,
0
For the Riemann-Liouville fractional integral, we have

. _ I'(k+1)
Ia (x)k - r

m(ﬂf)wk- (3)

Definition 1.3. Caputo’s fractional derivative of order ~y is defined as:

1 X
Diu(z) = I8 Tu™ (z) = / z—7)" 7" WM (dr, n—1<+<n,
@) =T @) = s [ @) ") <q<
For the Caputo derivative, we have

n—1 (k)

gD u(x) = u(z) — Z “ kl(O) >0, (4)
k=0

DVZJu(x) = u(x) (5)

22



Numerical Solution of a Fractional COVID-19 Model Using the FLPM

2 Main results

In this section, we introduce our proposed method, called the Fractional Legendre-Picard’s Iteration Method
(FPLIM), which offers an iterative algorithm for solving system of fractional ordinary differential equations.

Theorem 2.1. Let LY be the shifted Legendre polynomials of degree n. Then we have

oL (= Zgbz]L* i=0,1,---,N, (6)

where ¢(i,j) = Z@ijk’ and

(=) *0(G + k+1)
D(k+1D0(k+~y+1)(i —k)!
Zj: (=)' + h+ DD(h+k +~ + 1)(2§ + 1)
L(j+ 1)D(h+1D)C(h+~+k+2)(j—h)Al

Ok =

h=0

Remark 2.2. [3] Based on Theorem 2.1, in the vector form we have

A proposed method called fractional Legendre-Picard iteration method (FLPIM) for solving system of
fractional ordinary differential equations (FODEs) as
DU;(x) = Gj(z,Uj(z), 0<xz<L, n-1<vy<n, neN, 9)
ul () =uy), 1=0,1,...m;—1, 0<j<n. (10)
By applying the fractional integral to equation (10), we have

mj—1 xlu((l)) 1 T
Uj(z) = =t / (x —8)771G(s,U;(s))ds. (11)
0= 2 = T y (sl
According to (11), the iteration sequence is generated in the following way
mi—1 15 (1)
. S x'U; 1 z .
Ui(x) = 79 +/ z— 8 G(s, U (s))ds, 12

where Z/{]Q (t) is an appropriate initial function that corresponds to the initial conditions of the problem. The
first step of the FJPIM is to approximate the function f (S,Z/ll-;l(s)) using {IL} (s)}2_,. Therefore

Gj(s, Ui ZG L, (13)

N
where {Gl ! N " obtained as GZ ! 2k2+1 Z Gj(sr,l/{;*l(sr))l[‘,};(sr)wr With the placement of equation (13)

at (12), and according to (6) we have

; lu(l) i
Uy(w) = Z G+ T (Gals, Uy (9)))
1=0 )
mjflu(l) N N . N 1
= Z dO ZCIJL* )—FZGZEIZ szkL;(x)
! j=0 k=0 j=0 k=0
mj—lu(l) N o ) i
- ZL;(t)( > e+ Y G @ijk), 0<d<n. (14)
j=0 =0 k=0 k=0
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2j+ DT (j+1) L} j —1)I-f1r(y DL(f4141 . L
where Cj; = % ;:0 1(“(f4)r 3 +1)(1Z(+fi+l +)2)((§.f fJ)r! f)!' We assume that the approximate solution in the

i-th step is shown as

0

ZKZ]L* ()(Zu Clo—i-ZG i@ok)

(0

; ..+m(z“ocw+za Zem) (15)

lf
We obtain the coefficients {K OAY ) directly from (15), as follows:

O]

Zu CZJ+ZG3klz@wk, j=0,1,---N, 0<d<n.
=0

After updating the cofficients, the new estimated solution is generated. The proposed algorithm continues
to iterate until the stopping criterion is met, which is defined as [[U(z) — U. ' (2]l < €.

3 Numerical example

Consider the following non-linear dynamical model of COVID-19 disease [1, 2, 5]:

DIX(E) = 0 — pZ(X()(L+ vE()) — EX(0),
DIV(t) = pZ(OX()(L+ vZ(D)) - (€ + R)V(D),

DIZ(t) = 5+ vV(t) — (0 + € + W E(1),
C]D)”M(t):uz() EM(L), te0,15, 0<~<1,

M(0)£(£+H)(9+£+u)

where p = is proportionality constant. This model contains four compartments at time ¢
(day) healthy or suscept1ble population X'(t), the exposed class Y(t), the infected population Z(t) and the

removed class M(t). The other parameters in model and their corresponding values are provided in Table
1.

Table 1: Description of the parameters of model

Parameter Description Value
o The group of people whose is negative test result 0.00250281 million
v Rate at which individuals who have recovered lose their immunity 0.00009 million
& The mortality rate due to natural causes 0.0000004 million
K The constant rate that determines the progression of the infection 0.000024
1) The group of people whose is positive test result 0.006656 million
0 Fatalities resulting from the coronavirus 0.0109
L Recovery rate 0.75

By applying the proposed method, we can evaluate this example by setting the initial conditions as
follows, (scaled in million )

X(0)=0323, Y(0)=021, Z(0)=022 M(0)=0.21,

When using numerical methods to solve problems where the exact solution is unknown, it is important to
assess the accuracy and errors of the numerical approach. Table 2 shows the maximum absolute error of
solution by our method for two consecutive iteration (I = 8 and N = 10). For this model, in the absence of
a solution for direct error calculation, the numerical errors are using alternative means:

E, = — .
w = e un(t) = ursa ()
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Table 2 quantitatively analyzes the reliability and discretization independence of the numerical approach
used for model simulations. The obtained findings are compared with the findings of the FDE12 technique
solver. FDE12 Solves an initial value problem for a non-linear differential equation of fractional order
(FDE). The code implements the predictor-corrector PECE method of Adams-Bashforth Moulton (A-BM)

type described in [4]. Here, the step length of A-BM method , % is considered.

Table 2: The maximum absolute error of solution by our method (I = 8 and N = 10) for v = 0.5 and
comparison of the absolute error with the method FDE12.
EBrwy  Eyw  Pzw  Eme
Our method 1.4e—34 4e—29 1.5e—28 0
FDE12 lle—6 22e—7 3be—6 Tle—6

Conclusion

In this paper, we introduced the fractional Legendre-Picard iteration method as an effective numerical
technique for solving nonlinear fractional differential equations. In conclusion, the results of our study
demonstrate the effectiveness and accuracy of the new method proposed for solving the Covid-19 model. By
comparing the outcomes with those obtained using the Adams Bashforth Moulton method, we have shown
that our approach not only performs well but also offers efficient solutions. This validation underscores the
potential of our method as a valuable tool for modeling and analyzing infectious disease dynamics.
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Abstract

The effect of the past values of some natural physical phenomena in understanding the current and
predicting their future dynamics behavior is undeniable. Delay systems describe their behavior; hence
special attention has been given to them recently. In this investigation, we deal with the delay Volterra
integral equations as one of the most important tools in this field, applying the collocation method based
on the locally supported radial basis functions. Discretization of integrals obtained has been done through
the Gauss-Legendre integration rule. The presented scheme estimates the unknown function utilizing a
small set of data instead of all points in the solution domain and subsequently uses much less computer
memory and volume computing compared to global cases. In addition, the presented example confirms
that the new approach is powerful in solving these kinds of integral equations.

Keywords: Delay integral equations, Local radial basis functions, Discrete collocation method, Numer-
ical solution

AMS Mathematical Subject Classification [2010]: 45D05, 65D12

1 Introduction

To reflect more closely on the measured performance in comparison with the output of some problems, delay
Volterra integral equations have emerged in mathematical modeling processes describing physical phenomena
with memory effects. These equations are widely used in medicine, bio-mathematics, engineering, and other
sciences. In the present work, we establish the numerical solution of the nonlinear DIEs with the constant

delay 7 > 0, which are presented as follows

u(t) — /ti K(t,s,u(s))ds=g(t), 0<t<T, (1)

with the initial function
u(t) =), —7<t<0. (2)

The kernel function K (t, s, u(s)) is nonlinear with respect to the variable u, the function g(t) is given, and

the unknown function u(t) must be determined. Equation (1) can be considered as the general form of

'Speaker
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the various problems in the growth of single-species populations, the growth of capital or certain epidemics
proposed by Cooke [1], in which immigration or the importation of capital is allowed.

The complexity of the delay integral equations has made it impossible to solve them analytically, so
numerical methods are considered in solving such equations. We apply local radial basis functions with the
collocation method which is based on the use of a set of scattered data. To construct the discrete collocation
method, the uniform composite Gauss-Legendre quadrature formula has been employed. Finally, a numerical

example has been included to show the validity and efficiency of the new technique.

2 Locally supported RBFs

In this section, we focus our study on the locally supported RBF's to approximate a function on the interval
[a,b] C R utilizing a radial function. Let S = {¢1,...,tx} be a set of scattered points selected in [a,b] C R
and ¢(|t|) be a global radial function on R. To approximate a function u(t) at an arbitrary point ¢ € [a, b]

using the function ¢(t) based on the nodal set S, consider the following linear combination [4]:

u(t) ~ Grult) Zcm (t—t), telad], 3)
where the coefficients {cy,...,cy} are determined by the interpolation conditions

Gnu(t;) = u(t;)) =u;, i=1,...,N. (4)

Therefore, the solution of the interpolation problem based on the extended expansion (3) reduces to the

solution of a system of linear equations of the matrix form
Ac =u, (5)

where the pieces are given by Ajx = ¢(|zj — xx|), j,k = 1,...,N, ¢ = [c1,...,en]T and u = [ug, ..., un]T. If
a radial basis function ® is strictly positive definite, then the associated interpolation matrix A is positive
definite and so non-singular. Therefore, the interpolation problem (5) has a unique solution.

It should be noted that the condition number of the global RBFs grows when the number of nodal points
N increases in the domain to obtain accurate results. Therefore, the coefficient matrix of the interpolation
by global RBF's is ill-conditioned, i.e., a small perturbation in the initial data may produce a large amount
of perturbation in the solution. Useful schemes have been introduced by Fu et al. [2] to eliminate ill-
conditioning problems. Suppose [a;, b;] = [t; — i, t; + r;] in which 7; > 0 is chosen such that the set of
them establishes an open bounded cover for [a,b]. Therefore, a function w(t) on [a;, b;], i = 1,..., N, can be

estimated as follows:

u(t) = ' (lt—t]), € [aibi, (6)

J€I;

where I; is the set of indexes corresponding to points fallen within the influence domain [a;, b;] (or cover)

with the cardinal number |I;| = n; and

Wj(t) = Z[Bi_l]kﬁi(\t —tl), JjeL

kel;
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moreover B® = [¢(|t; — tx])], 4,k = 1,...,n4, is an n; X n; real symmetric coefficient matrix. Let ¢ be strictly
positive definite; then, we know that the matrix B? is invertible. In the expansion (6), the coefficients

{c;- }jer, are determined by enforcing the interpolation conditions
£iu(tj) = Uy, j €. (7)

The interpolation conditions (7) and the expansion (6) eventually result that the shape functions ¢(t)
satisfying the Kronecker delta condition [3] .i.e. ¥(t) = 0 for every ¢ ¢ [a;,b;]. Therefore, we can assume
that

u(t) = Pyul(t) = > _uai(t), tE€ la,b], (8)

i€l
where I, = {i : t € [a;,b;]} and the influence domain of the point ¢ is defined as D; = Ujer,|a;, b;] and the
functions wf(t) are called the shape functions for the LRBF interpolation.

3 Description of the method

In this section, a method based on the LRBF collocation scheme is presented to find the solution of delay
Volterra integral equations (1) with initial function (2). It is straightforward that, integral equation (1) can
be rewritten as follow by using integral properties:

0 t
u(t) — K(t,s,u(s))ds — /0 K(t,s,u(s))ds =g(t), 0<t<T, (9)

t—1
To handle, we need N nodal points {t1,...,tx} selected in the interval [0,7]; thus the unknown function

u(t) is approximated utilizing the LRBFs method by

N
u(t) ~ UN(t) = Zézw;(t)v te [OaT] (10)
=1

In the collocation technique, the coefficients {¢y, ..., ¢y} are evaluated by replacing the expansion (10) with

u(t) in the integral equation (9) and placing the nodal points ¢1, to, ..., tx in the achieved equation as

N .
Z civi(ty) —
=1

Since the support of the shape functions (t) are [a;, b;] = [t; — i, t; +7;] and these shape functions satisfy

0 N , tj N A
K(tj,s,zawg(s))ds—/o Kt 3 ai(s)ds = g(t;), j=1,..N. (1)
1 =1

tj—T =

the Kronecker delta condition, (11) becomes

0

N A tj N A
Cj — K(tj75>zéiwzz'(s))ds_/0 K(tj’sazéﬂﬁf(s))ds:g(tj)> J=1..,N. (12)
=1 i=1

tj—T

The discrete collocation method is obtained by calculating all integrals in the systems (12) associated with
the collocation method numerically. To approximate these integrals, we use the composite mpy-point Gauss-
Legendre rule with M uniform subdivisions relative to the coefficients {vy} and weights {wy} in the interval

[—1,1]. Suppose f € C?™N|a,b], for any given integer M > 0, we have [5]

b Aty X 1
[ =5y w > 60 + 0, (13)
a k=1 q=1
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where At = "2 and 0] = Slvy, + (¢ — 3)At. Applying the rule (13) for (12), if ¢; > 7, we have

oAy wkzm],k,zczw @) A“zwszwzcm ot (19

k=1 q=1

where At; = 7 j and ¢} = Atlvk + (g — 3)Aty and Aty = M] and 7} = At%k + (g — 3)Aty. For tj < 7,

using the initlal condition (2) results

A A
¢ — % wkZK tj, O 0(0F)) i ZwkZK tmk?ZW (1)) = 9(t;), (15)

k=1 =
Thus, by solving the systems (14) and (15) for the unknowns {¢éi,...,¢én}, the values of u(t) at any point
t € [0,T] can be approximated by
N

ZALN(t) = Z ész(t)7 te [07T] (16)

=1
4 Numerical example

Here, a delay Volterra integral equation has been solved to study the efficiency and accuracy of the proposed
method. In computations, the local Gaussian (LGA) and local inverse multiquadrics (LIMQ) radial basis
functions are used to solve the mentioned integral equation. We put ¢ = 0.1 x v/N(c = 0.2 x v/N) for LGA
and ¢ = 5/v/N(c = 10/v/N) for LIMQ, respectively. Also, the integrals that appeared in the scheme are

computed using 6-point GaussLegendre quadrature rule.

Example 4.1. Consider the following delay integral equation
! 1 2scos (u(s))

2 ds=g(t), 0<t<

uth) /t—0.2(008<t+2>+ s?+1 > s=g(b), Sts

g(t) = —0.2 cos <t+12> +1In(t* 4+ 1) —sin (In (£ + 1)) +sin (In (* — 0.4¢ + 1.04)) ,

)

| @

where

and the exact solution is
u(t)zln(t2+l), —O2<t<—

N)

Solving these types of integral equations employing previous numerical methods have more difficulties, but
we can easily compute the approximate solution for this problem utilizing the meshless method presented in
this work based on some random nodes. Table 1 reports |len||co, ||en||2 and the values of ratio at different
numbers of N. We also compared the obtained errors for different numbers of N in Fig. 1 drawn in the

logarithmic mode.

5 Conclusion

The current work has presented a computational scheme to solve delay Volterra integral equations. The of-
fered technique has approximated the solution by the discrete collocation method based on locally supported
RBFs constructed on a set of irregular knots. The appeared integrals are calculated via Gauss-Legendre
quadrature formula. The specific structure of the method leads to much less computer memory and vol-
ume computing used compared to its global counterpart. The illustrative example shows the reliability and

efficiency of the proposed scheme.
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Table 1: Some numerical results for Example 4.1 using the proposed method.

LGA LIMQ
N lenll2 lenllos Ratio len2 lenlloc Ratio
10 1.59x1072 287x1072  — 198 x 1072 4.18x 1072  —
20 6.91 x107* 1.26x 1073 4.52 3.88x 1073 7.97x 1073 2.39
30 3.22x107° 5.53x107° 7.69 475 x 107* 9.92x 10™*  5.14
40 9.69 x 1077 1.72x 1075 12.06 6.01 x 107° 1.22x107%* 7.27
50 3.98x107% 7.19x 1078 14.23 5.69 x 1076 1.18 x 107° 10.48
60 1.78 x 1079 293 x107Y 17.55 472 x 1077 9.74 x 1077 13.69
Figure 1: Distribution absolute error for Example 4.1.
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Abstract
The paper aims to develop a computational method for studying the impact of antiviral drugs on the
novel coronavirus. The method utilizes the moving least squares (MLS) approximation functions in the
discrete Galerkin method. The MLS is an effective technique for approximating unknown functions using
locally weighted least squares polynomial fitting. The proposed algorithm is computationally efficient and
easily implementable on computers. The validity and efficiency of the method are demonstrated through
a numerical example.
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1 Introduction

To model the spread of a disease in a populations, a very logical choice is to use compartmental models.
The three most commonly used compartments are Susceptible, S, which includes those who are healthyand
can catch a disease. Infectives, I, which includes those who are infected and can also transmit the disease.
Recovered, R, which includes those who are recovered from the disease and are immune to it. In order
to estimate the final size of the epidemic when antiviral drugs are used, the SIR model is modified by
categorizing infected individuals into two groups: treated (I;-) and untreated (I,), as described in equation
(1). The fraction of infected individuals receiving antiviral drug treatment, denoted by fy, is assumed to
reduce the infection level by a factor o [3]. As a result, the number of individuals who recover after receiving

treatment increases, leading to a reduction in the overall number of infection cases.

(B =-BO)F (Lu+0ly),
% = (1 - f())ﬁ(t)% (Iu + UItr) - 'Yu-[u’

G = fBOF L+ 0lir) = Yr Lo,

% = Yudu + YirLir.
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This system is supplemented by initial data
S(to) = So, I,(to) = Lup, Iy (to) = Iiro and R(to) = Ro.

The parameters v, and -, are the average recovery rates for the untreated and treated individuals, respec-
tively. The meshless methods are based on scattered data approximations that estimate a function without
generating a mesh in the domain. These methods have various advantages, most of which can be explained
by what is known in the literature as RBF's, or based on the MLS method [2].

2 Meshless local discrete Galerkin method

Given data values of the function u(t) at certain data sites 7 = {t1,...,tn} selected in the interval [a,b].

For t € [a,b], the value sy 7(¢) of the MLS approximation is given by the solution of

N
min {Z [u(t;) — p(t)]*w(t, t;) : p € Hm(R)} , (2)

i=1
where w : [a,b] X [a,b] — [0,00] is a continuous weight function. Let the set {po,..., pm} form a basis of
the space II,,,(R) and the data points {t1,...,tx} be a set of disjoint points in the interval [a,b], then the

problem (2) has a unique solution and the value s, 7(t) can be considered as

N
sur(t) =D uts)yi(t), (3)
=1

where the basis functions 1;(t) are a combination of the weight function.
In the following, we solve the system (1) using the MLS Galerkin method. By employing integration,
we reduce the system (1) into two integral equations as follows:

(0 === e (~ [ 80 (1u(r) + ot o)
| ()T + Lo, (@)
and
5n(t) = % foexp (- [0 (1u(r) + ot )
o [ B+ i )

we require N nodal points {1, ..., tx} selected in the interval [a,b] and we estimate the unknown functions
I,,(t) and I (t)by the MLS as follows:

N N
I,(t) = I, N(t) = Z Cuithi(t), I (t) = Iy N (t) = Z Cerii(t). (6)
i=1 =1

By replacing the expansion (6) with I,,(t) and I;,(t) in (4), and taking inner product (.,%;) upon both
sides, and using the composite m y-point Gauss-Legendre rule with M uniform subdivisions relative to the

coefficients {vy} and weights {wy} in interval [—1, 1], we have

mNM

CES S o (L (02)05(60) + L. O8] — Ly (61)] = 0, (7)

k=1 q=1
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where

py MmN M
) = i ex ( o) S S w0 (L (2 6)

p=1r=1

As@p on M

Zzwp u, N 771‘ eq )’(/}j(eq)

p=1r=1

+ ol N7 (07)))) 5 (0%) +

Similarly, equation (5) can also be approximated. Therefore, by the solving systems for the unknowns

{éw}fil and {étr,i}iJL the values of I,,(t) and I,(t) can be approximated. As a result, we have

Ry (t) = ’Yqu,N + rYtrItr,N-

3 Numerical result

A virus transmission model based on simulating crowd flow is used to simulate the spread of Covid-19 in
a population of 1000218 individuals. Among them, 1000000 individuals are susceptible, 200 are receiving
treatment for infection, and the rest are untreated infections. The model is solved for a time period of 50

days. For equation (1), the following parameters are chosen [1, 3]:
B(t) = In(1.01)exp(—t/40), o =0.5, Yo = In(1.1), Yer = In(1.9).

Figure 1 shows the numerical results obtained from the solution of this model using the proposed method, in
which we considered fo = 0.1. This Figure shows that the number of population who recover after receiving

treatment increases and leads to a decrease in the overall number of infection cases.
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Figure 1: Graphs of I,(t), I:+(t) and R(t)
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Abstract
In this paper, we introduce basic epidemic models without demographics and also compare them with

data.that we can optimally control the epidemic by using a dynamical system.SIR and SIS models are
the models that are studied in this section. The SIR model is studied for diseases in which there is no
possibility of the person becoming infected after contracting the disease (after becoming infected) and
passing the recovery period. But the SIS epidemic model is studied for diseases that a person can get
the same disease again after passing the recovery period and get infected,like a cold. In the following,
assuming that the total population size (N) is constant, we will study the Kermac-McKendrick model,
and in the SIS model, we will go through the stages of formulation in order to present the model using
the logistic equation.

Keywords: Dynamical Systems, Optimal control, Epidemic
AMS Mathematical Subject Classification [2010]: 13D45, 39B42

1 Introduction

In the history of medical research, there are reports where vaccination did not eradicate the disease. These
unexpected failures can be due to the ineffectiveness of vaccination, hiding symptoms of illness in people’s
bodies,or physical contact rate with infectious people. With this, we have tried to reduce the number of
infected people to their minimum amount by prescribing medicine to the infected and quarantining them.
Here we divide the population into three separate groups: S(Susceptible), I(Infected), R(Recovery) and also
we consider the total population size remains constant. In general, we have two types of prevalence rates,
one is the standard prevalence rate and the other is the non-standard prevalence rate, which we have also
considered the psychological effects of the epidemic. That is, when the awareness of a disease becomes
widespread, and the methods of preventing the disease become known to everyone, people will try to avoid
being in crowded places as much as possible, or do not have physical contact with suspicious people. In
general, they will prevent the disease with different methods. Therefore, in this case, the number of infected
individuals decreases. In general and in summary, in this article, we introduce a special strategy on the SIR

model to control infectious disease, where the parameters are time-varying.

Definition 1.1. A disease is infectious if the causative agent, whether a virus, bacterium, protozoa, or
toxin, can be passed from one host to another through modes of transmission such as direct physical contact,

airborne droplets, water or food, or mother to newborn.

Definition 1.2. If the number of cases rises above the usual average within a short period of time, a disease

outbreak occurs.
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Definition 1.3. If fresh susceptibles are added to the population, either from birth or migration or if
reinfection occures easily, the epidemic may persist and the infection may remain in the population over a

long period of time. In this case, the disease is said to endemic in the population.

1.1 SIR Epidemic Model

In SIR epidemic model we have three classes in here:

-susceptible (The size of this class is usually denoted by S)
-infectious/infected (The size of this class is usually denoted by I)

-removed /recovered (The size of this class is usually denoted by R)

Loss of immunity

1.2 Kermac-McKendrik Model

The KermackMcKendrick model is based on several assumptions

-There are no births and deaths in the population.

- All recovered individuals have completely immuned and cannot be infected again.

-The population is closed, that is no one from the outside enters the population, and no one leaves the
population.

-Total population size N(t)=S(t)+I(t)+R(t)= constant.

1.3 Deriving the KermackMcKendrick Epidemic Model

S I I A -

S'(t) = —BIS
I'(t) = BIS —~I
R'(t) =~I

S'(t) = uN — XIS — Death
I'(t) = A\IS — I — Death
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R'(t) = vI — Death
N/(t) = IU,N - D1S - DQI - D3R

L e e
III.II‘ _.//./ o
1.5 SEIR Model
A | S Bs E of | vl
b {uE [+
S'(ty=A—BIS — uS
E'(t)=pIS —oFE — uE
I't)y=0FE — (u+a)l —~I
R'(t) =~I — uR
N’(t) = S(t) + E(t) + I(t) + R(t)
total population size N is not constant here.
1.6 SVIR Model(Immunization)
bN S Als | vl R
l ds dl l dR

SIR model with vaccination:
S =bN — NS —dS — pS
I'=XIS—(d+9)I

R =pS+~I—dR
N=S+I+R

1.7 SVIR Model

SIR model with a leaky vaccine:
S'=—BIS —pS
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I' = BIS + oMV —~T
R =~I
V'=pS —a\lV

1.8 SQIR Model

)

Q

SIR model with Quarantine:

S'=-pIS

I' =pIS —~I —pI
R =~I+6Q

Q' =pl -0Q

1.9 SIR model with medicine effect

s (B-B2)s! I vl R ‘

S'=—(B—-pB)IS
I'=(B—p1)IS —~I —aM
R =~I

M = —aM
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Abstract

In this work, we use a mesh-less weak form based on the direct mesh-less local Petrov-Galerkin
(DMLPG) method to numerically solve a mathematical model of cancer cell invasion of tissue. The
DMLPG method employs the generalized moving least-square (GMLS) approximation and the local weak
form of the equation. Time discretization is achieved using a nine-stage Runge-Kutta method with non-
decreasing abscissas, offering flexibility in time step width. The model comprises time-dependent reaction-
diffusion-taxis partial differential equations describing interactions between cancer cells, the extracellular
matrix, and matrix degradation enzymes. We also present numerical simulations demonstrating cancer
cell invasion behavior over time.

Keywords: Cancer invasion, Reaction-diffusion-taxis partial differential equations, Generelized moving
least squares approximation, Mathematical biology,

Mathematics Subject Classification [2010]: 81T80, 92B05, 80M22

1 Introduction

Mathematical modeling of tumor growth has evolved significantly since Hill’s 1928 work on oxygen dif-
fusion in tissues. In 1955, Thomlinson and Gray introduced a model for oxygen diffusion and consump-
tion by tumor cells. Over the years, modeling various cancer growth phases has garnered extensive re-
search attention. Hanahan and Weinberg identified and later expanded the hallmarks of cancer in 2000
and 2011. Subsequent models addressed tissue invasion, including contributions by Gatenby, Gawlin-
ski, Perumpanani, Anderson, Chaplain, and others, focusing on factors like cell adhesion and the role
of the extracellular matrix in cancer invasion. In this paper, we investigate the mathematical modeling
of cancer cell invasion into tissue (solid tumor growth at the avascular stage) within a two-dimensional
space using the following system of time-dependent partial differential equations over the square domain
Q=10,1?:={@:= (z,y)’ € R?:0< z,y <1} in nondimensionalized form [1, 3].

%’Z =d,V?®n -~V - (nVf),

%—T =d,,V?m + an — fm,

where d,, is a constant denoting the tumor cell random motility coeflicient, v is a constant representing the
haptotactic coefficient, n is a positive constant for the degradation coefficient of the extracellular matrix
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(ECM). Additionally, d,, is the diffusion coefficient for matrix degrading enzymes (MDEs), « is the constant
production coefficient of MDE by tumor cells, and 3 is a constant representing natural decay. The initial
conditions are specified as follows [1, 3]:

2
n(x,0) = exp <—€> ,  f(x,0) =1—-0.5n(x,0), m(x,0)=0.5n(x,0), in €, (2)

where 7 := Ha: —(0.5,0.5)

5, With boundary conditions specified as follows:

n.(—d,Vn+nxVf) =0, n(Vf)=0, n.(—d,Vm)=0, (3)

on 0%, where n denotes the outward normal vector on the boundary 99Q2. In Eq. (1), n(x,t) represents the
concentration of tumor cells, f(x,t) denotes the concentration of ECM, and m(x,t) indicates the concen-
tration of matrix metalloproteinases (MMPs), all as functions of spatial and temporal variables.

2 The generalized MLS approximation

Weighted residual methods are widely employed for numerically solving differential equations. These meth-
ods underpin various numerical techniques such as spectral methods, finite element methods, finite volume
methods, and mesh-less methods. The core idea of these approaches is to represent the approximate solution
as a linear combination of known basis functions. To demonstrate the GMLS approximation, consider a set
of scattered nodes along the boundary of the problem domain, denoted by € U 0f2. These nodes are repre-
sented as X = {Xi}i]\il (see Fig. 1) with i ranging from 1 to N. The GMLS method seeks to approximate
the functional {u;(¢)} |, where ¢ is an unknown function in the dual space of C(Q), denoted by C()*.
The approximation of u(¢) in the GMLS method is expressed as [4]:

u(e Z Ni(w)p(x;), VYo ePh cC™(Q), (4)

where )\; are the linear coefficients, and %(¢) represents a linear combination of ¢(x;), P! = span{p1, ps, ... ,PQ}
is a d-dimensional subspace and @ is the total number of basis monomials.

The coefficients A; are determined through the GMLS approximation by minimizing the weighted resid-
ual:

Z"Jz (xi) — Xi))Q’ (5)

for all p € P! .

The GMLS approximation W) is given by u(p*), where p* is the minimizer of this quadratic form.
Consequently, the optimal solution A*(u) € RY for (5) is
(

M(u) = u(p?)(PTWP)'PTW, (6)

where PT represents the basis monomials evaluated at the scattered nodes, W is a diagonal weight matrix,
and u(p”) denotes the evaluations of the functional u on the basis monomials.

3 DMLPG formulation and time discretization for governing equation

To develop the DMLPG (Discrete Moving Least Squares Particle Galerkin) methods for solving Eq. (1),
it is essential to derive the local weak formulation. This process involves considering a set of internal and
boundary nodes, denoted by X = {xl}f\; 1> within the problem domain. The arrangement of these nodes can
be either regular or irregular. Additionally, local subdomains €, C Q are defined around each node. The
shapes of €2, can vary, including geometries such as circles or squares of different sizes (see Fig. 1). The
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Slr : Local Subdomain

1"r : Boundary of Local subdomain

I : Domain Boundary

Figure 1: Arrangement of scattered nodes within an irregular domain

local weak form of (1) is derived by multiplying both sides of the equation with a suitable test function,
such as vy, vy and vy,.

([ 940 = / (A, V21 — 4V - (0 f)) vad®2
o Ot Q
ﬂvfalQ = —/ nm fupdS, (7)
o Ot Q
amvmdQ—/divamdQ—i—/anvmdQ—/ﬂmvmdQ, Vo, U, U, c H(Q).
o Ot Q Q Q

Using divergence theorem for the global weak form (7) gives
(9 / n0dQ = —d,, / V.V u,d) + / NV .V 0,d)
8t Q (9] Q
0
815/ fopdQ = —n/mfvfdQ (8)
Q Q

0
/ mu,dQ) = —dm/ Vm.VUmdQ—i—a/ nvmdQ—ﬂ/ mupd§), Y, vf, v, € Hl(Q)
ot Jq Q Q Q

the linear system of algebraic equations will be obtained:

ow
where

0
/nvndQ —dn/ Vn.andQ—l—’y/an.andQ
ot Ja Q Q

ow 0

— =< = Q =< — Q

5 at/ﬂfvfd , and G(w) n/{szvfd
8/ MU dQ) —dm/ Vm.vadQ—l—a/nvmdQ—B/ MU dSY,
L0t Jo 0 Q 0

The integrals in Eq. (8) can be approximated using the GMLS method as follows.

u (@) = fo, wd?  ~une(d) = SN A (@) u (@),
uzi(9) = fo VuVrdQ =~ ugp(@) = SN Aoy () u (@), (10)
ug p(u) == er VuvdS) ~ um) = Zfil Asi (x) u (),

where u and v can be n, f,m and vy, vf, vy, respectively. Different variants of DMLPG methods can be
devised by choosing particular functions as test functions. The primary distinction among these methods
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lies in the selection of test functionals used to formulate the local weak forms of the problem. In DMLPGI,
the test functionals are the point values of the solution and its derivatives at specific nodes. In DMLPG2,
the test functionals consist of integrals of the solution and its derivatives over subdomains. In DMLPG5, the
test functionals are integrals of the solution and its derivatives over subdomains, multiplied by a Heaviside
step function. The selection of test functionals influences the accuracy and efficiency of the DMLPG method.
For instance, in DMLPGI, certain functionals can be excluded if the test function vanishes on the boundary,
whereas in DMLPGbH, some functionals are unnecessary due to the presence of the Heaviside step function.
In our numerical calculations, we utilize the following Gaussian weight function [4]:

exp(—;ﬂd?)—exp(—;ﬂdg)

, 0<d <dp,
wi(x) = 1—exp(—p>dg) ==
0, elsewhere
For discretization of time variable, some preliminary is required. We define ¢t,, =n7, n =0,1,..., Ny,

in which 7 = %, denotes the step size of time variable. In this manuscript, we utilize the third-order
explicit SSP Runge-Kutta method with non-decreasing abscissas (eSSPRK (9, 3)) with 9-stage for Eq. (9)
as follows [2]:

w® =", w® =l ¢ %TG (w(ifl)) fori=1,...,4,

w® = lw" —|—§ <1TG (w(4)) + w(4)> , w® = E < "4 176‘ (w”)) —|—§ <1TG (w(5)) + w(5)> (11)

5 6 1 6 1\6
w® =L 2 (1 4 (w(@')) Lu®) . w® = Llg (wm) L@ Wt —® 4 L (w<8>) .
3 3 \6 ’ 6 ’ 6

4 Numerical result

Example 4.1. In this model, following [14,20], we assume the tumor cell equation (the first equation of
(1.1)) has no birth or death terms. The parameters are set as d,, = 0.001, d,, = 0.001, v = 0.005, n = 10,
a = 0.1, 8 =0, and € = 0.0025. The initial conditions for the concentrations of tumor cells and MDE are
given by:

(z —0.5)% + (y — 0.5)2

€

n(x,y,0) = exp <— ) . m(z,y,0) = 0.5n(z,5,0), (z,)7 €[0,1]%

and
1 —0.5n(z,y,0), 22 +y% < 0.25,
1—0.5sin(Z(z —0.5))] — 0.5exp (—222) . o.w.

€

f(x,y,0) ={

The numerical simulations of n and f with spatial step h = % and time step 7 = Wloo are illustrated in

Fig. 2 at various time points. This figure shows that at t = 4, the symmetry of the tumor cell distribution
breaks, leading to regions of high tumor cell density. As time progresses, these high-density regions continue
to invade further. Additionally, it is observed that a significant concentration of tumor cells migrates along
collagen fibers and degrades ECM proteins by secreting MDEs. Notably, two crucial factors influencing the
final tumor cell density are the heterogeneity of the ECM and the haptotactic response of cancer cells to
the MDEs resulting from matrix degradation.
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Figure 2: Spatio-temporal evolution of tumor cell density (left) and ECM (right) from the numerical simu-
lation with EFG method at t =0,2,4 and t =7
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Abstract

This research paper explores the dynamics of infectious diseases using a discrete-time SIR, epidemic
model with logistic growth, focusing on local bifurcations analytically and numerically.
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1 Introduction

Infectious diseases continue to pose a significant threat to global health, necessitating a deep understanding
of their dynamics for the development of effective control and prevention strategies. The complexity of
disease transmission, exacerbated by seasonal variations, underscores the need for mathematical models like
the SIR model to unravel these intricacies.

Previous research has emphasized the chaotic oscillations inherent in infectious diseases, highlighting the
importance of comprehensive models that can capture the nuances of disease spread. Studies focusing on
epidemic models with constraints such as limited medical resources and treatment capacity have shed light
on the multifaceted nature of disease dynamics.

In epidemiological models, the exponential increase in susceptible individuals in the absence of infection is
a critical factor to consider. While some models discuss constant input saturation rates, the logistic growth
hypothesis for susceptible populations appears more reasonable and applicable in real-world scenarios.

The SIR epidemic model, with its incorporation of logistic growth and modified saturated incidence rates,
offers a nuanced perspective on disease dynamics. By exploring parameter variations and critical values
for bifurcations, this study aims to enhance our understanding of infectious disease dynamics and improve

disease management strategies.
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2 Mathematical Model

In epidemiological models, the number of susceptible individuals increases exponentially in the absence
of infection. Reference [1] discusses models with a constant input saturation rate. However, the logistic
growth hypothesis for the susceptible population appears more reasonable and applicable. Surprisingly, the
potential population’s logistic growth has not garnered significant attention.

The SIR epidemic model,

S=ps(1-5) - psL,
lizlisofs—(a—i—m—i—g)l, (1)

R=g9gl —mR,

as proposed by Akrami and Atabaigi [5], addresses the susceptible population by incorporating a modified
saturated incidence rate. In the epidemic model described by Equation (1), S(t), I(t) and R(t) represent
the numbers of susceptible, infective and recovered individuals at time ¢, respectively. The dot notation

indicates the derivative with respect to t. The parameters in the model are:
e p: the intrinsic growth rate of the susceptible population.
e k: the carrying capacity

e «: the disease-induced death rate

g: the recovery rate of the infective individuals

m: the death rate of the population

b: a positive constant

e «: a positive constant

The term 1{’5){5 represents the saturated contact rate, which models the transmission of the disease from
infective to susceptible individuals.
To analyze the epidemic model, we can isolate the first two equations in Equation (1) because they are

independent of the third. Therefore, we focus on the reduced system:

ds _ S bSI

dt _pS(l_E)_H—aS’ (2)
dl _ bSI dI

dt 1+aS ’

where d =a+m +g.
In managing short-term outbreaks, discrete-time models prove invaluable for informed decision-making.
Specifically tailored for SIR epidemic scenarios, discrete-time systems offer enhanced suitability. This study
delves into the dynamics of a discrete-time SIR epidemic model.

Utilizing the Euler method on the continuous-time formulation yields the following set of discrete equa-

tions:
Suit = Su+o (pSy (1-52) — Poalp),

(3)
In+1 = In +o (f_fg{gz - dIn) 5

Here, o denotes the time step interval.
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3 Analytical Investigation of the Discrete-Time SIR Epidemic Model

In this section, we analytically investigate the dynamical behaviors of the discrete-time SIR epidemic model.
We focus on the stability and bifurcations of the model.

To analyze the dynamics of the discrete-time SIR epidemic model given by Equation (3), we first need to
determine the fixed points of the system. The fixed points are the values of (S, I) that satisfy the following

equations:

S :S+U(PS(1*%)*1ZSJS>7

I =I+o (- ar).

Solving these equations, we find that the model has three fixed points:

1. FO =(0,0),
2. FU = (k,0),
* d adk—bk+d
3. F( ) = (7ad—b’ 7p((adfb)2n ))

The existence of the fixed point F*) is subject to the condition umeM) > 1.

3.1 Bifurcation Analysis

Considering the fixed points, the fixed point F*) holds greater significance from a biological perspective.

Therefore, we investigate the local bifurcations of model (3) at this particular point.
Theorem 3.1. The fized point F®) experiences a period doubling bifurcation when the parameter k reaches

the critical value ky, which is given by:

opd (ad20 — bdo — 2ad — 2b)
a?d3po? — 2abd?po? — 2a2d?po + b2dpo? + 2abdpo — 4abd + 462

Ky =

This critical value marks the onset of a period doubling bifurcation, where the fized point F™) loses its

stability and the system exhibits a period-doubled oscillation.
Theorem 3.2. The fized point F®) experiences a Neimark-Sacker bifurcation when the parameter k reaches
the critical value ky, which is given by:

B ad?0c —bdo —ad — b
a?d?0 — 2abdo — a?d + b%0 + ab’

Ry =

At this critical value of k, the fized point F™) loses its stability, and a stable invariant closed curve bifurcates
from the fized point. This bifurcation leads to quasi-periodic oscillations in the system, where the trajectories

converge to a torus in the phase space.

4 Numerical Investigation of the Discrete-Time SIR Epidemic Model

In this section, we explore the dynamical behavior of the discrete-time SIR epidemic model described by
Equation (3) through numerical investigation. We employ the numerical continuation method, which enables

systematic exploration of the parameter space. By doing so, we identify bifurcations and transitions in the
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system’s behavior, leading to a comprehensive understanding of the model’s dynamics. In this section for
dynamical behavior of the model (3) numerically, we use the numerical continuation method, [6].

In this section, we fix the following parameter values:
b=1,a=04,d=1,p=6,0 =1.

We treat the parameter k as a free parameter, allowing it to vary while the other parameters remain constant.

By systematically varying the parameter k, we identify the following codimension one bifurcation:

1. As the parameter k crosses the critical value k, = 2.741935484, the fixed point
F®) = (1.666666667, 3.921568627) ,

undergoes a period-doubling bifurcation, which is characterized by the critical normal form bpp =
—1.260363.

2. As the parameter k crosses the critical value k., = 3.333333, the fixed point
F®) = (1.666666, 5.00000) ,

undergoes a Neimark-Sacker bifurcation, which is characterized by the critical normal form cyg =
—1.427143.

The bifurcation diagram of the model (3) is presented in figure 1.

a5t O\

3571

2571

Figure 1: Bifurcation diagram of the model (3).
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Abstract

Mathematical modeling has long been essential for simulating dynamic biological processes. In this
work, we focus on a tumor growth model, which conceptualizes tumor growth as a biological mechanism
that can be effectively modeled using the Cahn-Hilliard (CH) equation. The CH model, a diffuse interface
model, is employed to capture the complexities of tumor growth dynamics. We implement a conservative
finite difference scheme to numerically simulate this model. Our results confirm that the numerical method
preserves both mass and energy, ensuring the fidelity of these fundamental physical properties throughout
the simulations.

Keywords: Cahn-Hilliard equation, Diffuse-interface tumor-growth model, Conservative finite difference
scheme

Mathematics Subject Classification [2010]: 65L80, 65N06

1 Introduction

In a healthy body, cells meticulously regulate their proliferation and programmed cell death (apoptosis)
within various tissues to optimize repair and healing processes. This delicate balance ensures that cellu-
lar growth and regeneration occur as needed, while damaged or unnecessary cells are efficiently removed.
However, in cancer, this carefully regulated mechanism breaks down. Cancer cells begin to proliferate un-
controllably or resist apoptosis, leading to the alteration of the microenvironment to favor their survival.
These aberrant cells can migrate and metastasize to regions far from the primary tumor site, ultimately
posing a severe threat to the host body by causing physical obstructions or organ malfunction [4].

Normal cellular behavior is orchestrated through the expression of genes and regulatory networks within
cells. In cancer, genes that promote proliferation (oncogenes) and those responsible for apoptosis (tumor
suppressor genes) may malfunction, and regulatory signals can be ignored. This dysfunction within an
abnormal cell population can lead to additional mutations and epigenetic changes, resulting in different
subgroups of cells, or ’clones,” each with distinct characteristics. As these cancerous cells accumulate to
form microscopic nodules without access to the vascular network, they rely on nutrients and growth fac-
tors diffusing through the neighboring healthy tissue. Consequently, these nodules typically remain small,
growing at most to a few millimeters in diameter.

The accumulation of tumor cells can lead to acute and chronic shortages of oxygen (hypoxia) and
nutrients (e.g., glucose, causing hypoglycemia), as well as the build-up of metabolites (e.g., lactic acid,
leading to acidosis). As tumor cells continue to proliferate, the existing vasculature becomes insufficient to

1Speaker
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deliver oxygen and nutrients to all the cells, which may induce neovascularization. Under these stressful
conditions, cells release pro-angiogenic growth factors to drive angiogenesis—the process by which existing
blood vessels grow from the main circulatory system to supply blood to the tissue, similar to the process
occurring during wound healing. This angiogenesis provides the tumor with a direct supply of nutrients and
growth-promoting factors, allowing it to grow larger and potentially shed cells into the bloodstream, leading
to the formation of satellite tumors in distant parts of the body (metastases). Metastasis is the leading
cause of cancer-related mortality. By the time a tumor reaches a clinically detectable size, it is usually in
the vascular growth phase, indicating that the transition to metastasis and malignancy often begins with
angiogenesis.

Hypoxia, hypoglycemia, and acidosis are exacerbated by the tumor-induced microvasculature, which,
unlike the normal wound healing vasculature, tends to be highly disorganized and poorly functioning. This
results in considerable heterogeneity in oxygen and nutrient delivery and metabolite removal, conditions
that correlate with poor clinical outcomes and an increased risk of cancer spread throughout the body.
Moreover, these harsh conditions may select for apoptosis-resistant tumor cells, induce further blood vessel
formation, and increase invasiveness [4].

Understanding the complex interplay between tumor growth, nutrient acquisition, and the resulting
microenvironmental changes is crucial for developing effective cancer treatments. This paper aims to provide
deeper insights into tumor growth model by simulations and our numerical approach ensures that mass and
energy are conserved throughout all simulations.

In this research, a coseravtive scheme is proposed for CH tumor growth model [5, 3]

up(x,t) = Apy(x,6) + yu(x,t), (x,t) € Qx (0,77,

pu(x,) = f'(u(x,t)) — e2Au(x,t), u(x,t)(x,t) € Q x (0,71,

ve(x, 1) = Apy(x,t) — vu(x,t), (x,t) € 2 x (0,77, 1)
po(x,8) = 2 (x 1) € Q x (0,7,

u(x,0) = up,

Vu-n=Vyu, n=Vv-n=Vu, n=0, (x,t)€dx(0,T],

which § > 0, p > 0 and A = V2. The tumor cell function and nutrient-rich cell function are represented
as u and v respectively. u, and pu, are chemical potentials corresponding to v and v. 7, is the chemical
reaction defined as v, = P(u) (ty — pty) and

Pu) = { pl-w), lish @)

0, w>1 and u<-1.

The CH tumor growth model is formulated based on the classical CH equation [3]

Q) — Ap(x,t), (x,t) € Q2 x (0,T],
p(x,t) = f(u(x,t)) — e2Au(x,t), (x,t) € Q x (0,77, (3)
Vu-n=Vu-n=0 (x,t) € x(0,7],

where ¢ is a constant that represents the equilibrium interface thickness and n is the exterior unit normal

vector on the boundary, Vu, Vu are gradient vector, f(u) is the free-energy density function in terms of

(u—1)2, u>1,
fu) =< 0.25 (u? —1), lu| <1, (4)
(u+1)2, u<-—1.

Interested readers can refer to [1] for the existence of an inviscid aqueous phase. The CH model is known to
possess two significant properties. For Eq. (1), these properties are represented by the total mass, denoted
as M, and the total energy, denoted as E [5, 3]

M = /u+v (5)

E= f\vU|2+f(u)+ﬂ2 dx. (6)
o\ 2 26
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In this part, we propose a conservative finite difference scheme for the CH equation in Q = [a, b] X [¢, d]. For

T b—a
positive integers N, N, and M, let time-step 7 = U t, =n7t,n=20,1,..., M and space-steps h, = N
X
d—c
x; = ihg, 0 < i < Ny and hy = N Y = jhy, 0 < 7 < N,. The difference operators are defined for
Yy
function u as
n n n n
+ o Uiy — U — Uy U 1 + -\"
(i) d = == ()] = c(y), =5 () )
ha he 2
n n n n
ny+ _ Yigr1 T Y ny— _ Wiy T i1 n _}( n\+ n )
(uiy), = hy, (uiy), = h, (wiy), = 5 (uiy), + (ui), L’

Vhug; = ((“Zj)x + (“Zj);,) o Apugy = ((U?,y‘)x,x + (“Zj)yy> ;
ul T —

(uiy), = = - =

Discretizing Eq. (1) using the finite difference method yields the following relation

WY DA = A+ 29
2 2 , () ,
%Ahun—i-l(SJrl) + Mﬁ-{-l _ _%Ahun +2f untl —f (un)’
T T
pntl §Ah,ug+1 =" + §Ahuﬁ + 273“(5) —n,

1
—SU Tt =0,

which has iterative step. This discrete scheme can be represented in matrix form as follows:

T
g2 u 2
i £ ’ ’
5 Ah 1 0 TO Ly _ _EAhun 4 2f (un—i-l) _ f (u”) . (9)
0 0 I —gAh : U"+gAhuﬁ+273+l—’Yﬂ
1 v
0 0 —SI I L 0 J

2 Main results

Example 2.1. Consider the two-dimensional CH equation [3]

ou(x,t)
ot

+A [P Au(x,t) — flulx, )] = g(x,1), (x.t) € 2x(0,T], (10)
in the domain = [0,1]?, where ¢ = 0.1 and the analytical solution u(x,y,t) = e !sin?(rx)sin?(7y)

applies. The initial condition is given by u(z,y,0) = sin?(mz)sin?(7y) and the boundary condition is
ou

o % (f’(u) — 52Au) = 0. The potential function is derived directly from the exact solution.

Table 1 displays the errors and accuracy rates, which closely match the theoretical predictions of the
proposed method.

Example 2.2. In this example, we conduct simulations of the CH model (1) over the domain Q = [—1,1]?
[2, 3]. The chosen parameters are p = 300, § = 0.01, and ¢ = 0.02. The free-energy function utilized is
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Space step(h) ea(method in [3]) ea(present method)  Corger

1
% 3.58992 x 101 4.6943 x 102 - —
1
m 1.54646 x 101 1.1065 x 102 2.0849
1
% 1.12945 x 1071 4.8265 x 1073 2.0462

Table 1: The error and convergence order with dt = 107> at T = 0.1.

f(u) =0.25 (u? — 1)2. The initial condition applied is

ol ) = i (2.

(11)

/UO(‘T7 y) =1
Fig. 1 provides a visual representation of the tumor cell evolution at t = 0.0001, 0.008,0.032. Utilizing a

4 08 06 -04 02 0 0.2 04 06 0.8 1 -4 08 06 04 02 0 02 04 06 0.8 1

4 08 06 -04 02 0 0.2 04 06 0.8 1 -4 08 06 04 02 0 02 04 06 0.8 1

4
0.8
0.6
0.4
0.2

0

-02

-04

-06

-08

el 3
4 08 06 -04 02 0 0.2 04 06 0.8 1 -4 08 06 04 02 0 02 04 06 0.8 1

Figure 1: The simulation of tumor cell u(left) and nutrient-rich cell v(right) for single tumor cell in
t = 0.0001,0.008, 0.032 respectively

110 x 110 spatial grid with a time step of 7 = 1 x 1075, the left column illustrates the tumor cell volume
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fraction u, while the right column depicts the nutrient-rich volume fraction v. It is evident from the Fig. 1
that the tumor cells progressively consume the nutrient-rich environment, leading to an expansion in tumor
size over time, a trend consistent with findings in prior research [5, 2, 3].

Fig. 2 depicts the temporal evolution of mass and energy. The mass remains invariant regardless of the time

0.4

200

0.3} T 150
=
g o

§ 0.2 g 100
=]

01f 4 50

(1] y ; : 2 . . .
0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08
time time

Figure 2: The change of mass and energy versus time of single tumor cell

step size, while the energy consistently decreases monotonically until reaching a steady state. These results
confirm the theoretical predictions of mass conservation and energy dissipation, validating the robustness
of our method.

3 Conclusion

In conclusion, this study underscored that by employing a conservative finite difference scheme, we success-
fully simulated the CH model while preserving critical physical properties such as mass and energy. The
preservation of these properties throughout our simulations highlighted the robustness and reliability of the
numerical method. These findings paved the way for further exploration and refinement of mathematical
models in cancer research.
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Abstract
We study a fractional optimal control problem that models cancer treatment. By introducing Miintz—
Legendre polynomials and presenting a stable scheme for their Caputo fractional derivative, a new pseu-
dospectral is derive for trajectory optimization. We also construct a novel costate estimation procedure
based on the first order optimality conditions. This method is particularly suitable for problems whose
solutions contain non-integer exponent factors. Numerical result are presented to demonstrate the per-
formance and accuracy of the proposed method.

Keywords: Fractional optimal control; Cancer treatment; Pseudospectral; Costate estimation; Miintz polynomials

1 Introduction

Numerical solution of some applied models represented by fractional optimal control problems (FOCPs)
has been considered by some authors [1, 2, 3]. Recently, a fractional optimal control problem with Caputo
derivative has been presented for modeling tumor burden under immune suppression [4]. More specifically,
if we consider ¢ as time, T'(t) as tumor cells, I(¢) as immune cells, N(t) as normal cells, F(t) as fat cells and
D(t) as chemotherapeutic drugs, then the following cancer model describes the interactions between T'(t),
I(t), N(t) and F(t) at time ¢ near tumor site, while chemotherapeutic drugs D(t) is injected into the body:

1
Min J = / (AT — w2 (1) + (1)), (1)
0
subject to the following nonlinear fractional dynamical system
(CDeT(t) = mT(t) (1 - plT(t)) — a THI(t) — asT(t)N
§DRI(t) = 51+ bi s — asT(R)I(t) = pI() — 12 D(
CDEN(t) = roN(t) (1 - pgﬁ(t)) — aT()N(t) — 3 D(t)N
§DF(t) = rsF(t) (1= psF (1)) — asT(H)F(t) = 3D()
§DeD(t) = u(t) — ¢D(t),

and initial conditions T(0) = Ty, I(0) = Iy, F(0) = Fy, N(0) = Ny, D(0) = Dy, where SDf(t)
denotes the Caputo derivative of order 0 < av < 1 defined by [5]

Cpef(t) = r(11—a)/ (t—7)f(r)dr, t>a. 3)

Note that, u(t) is the dose of injection to be controlled. Here, we propose a Mntz—Legendre pseudospectral
method for trajectory optimization and costate estimation of the cancer model (1)—(2).

!Corresponding author and speaker. E-mail addresses: hussein_ghassemiQyahoo.com.
2E-mail addresses: mm.maleki2013Qgmasil.com.
3E-mail addresses: allameQ@khuisf.ac.ir.
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2 Mintz-Legendre polynomials

Let @ > 0 be a real number and ¢ € [0,7]. The shifted Miintz-Legendre polynomials [6] are related to a
class of Jacobi polynomials as follows:

Lo(tia) = JaY (2 <;)a - 1> : (4)

Hence, using the three-term recursive relation of Jacobi polynomials, one has

1 t\* 1
Lo(tia) =1, Li(ta)= (- +1) <T> == balnsi(ta) = ban(t)La(t @) = bynln-1(ta).  (5)

where a
0,L-1 0,L-1 t 0,L-1
bLn = ag,na ), bg’n@) = a;na ) <2 <T> — 1) s b37n = Cl,:(g’na )

Let 0 < a < 1 be a real number and ¢ € [0, T]. It can be easily shown that the representation

1+ na 1 1\ (1 l) +t\ ¢
C Nna . _ _ o e’ _ _
ODth(t,a)—aF(l_a)Ta/o (1 z ) aoi (2(7) 2-1) da, (6)

holds true. For the numerical evaluation of the integral on the right-hand side of Eq. (6), the N-point
Gaussian quadrature rule, can be utilized to arrive at

1 o N
/O(Hi) fdt =S w@ D), fePo. (7)
k=1

—Q
Clearly, the weight function w(t; o) = (1 - t%) is a nonclassical one and for each value of o the Gol-

ubWelsch algorithm can be used for calculating the weights {w’ga)}szl and nodes {T,Ea)}]kvzl of a Gaussian
quadrature [7]. Therefore, since the quadrature rule (7) with N = [n/2] becomes exact, Eq. (6) is equivalent
to

n

(5] a
1+ no 1,L t
C o . — (Oé) ( 7(1) (Oé)
o DLy, (t; o) = T —a)To 221 wyJ, 8 <2 <T> Y — 1) . (8)

3 Formulation of the Muntz PS method

For brevity, we consider the following nonlinear FOCP in Bolza form: Minimize the cost functional

T =(t7,X(t7)) + /Otf (. X(1), U()) ar, ()
subject to the fractional order system dynamics
CDEX (1) = f(t, X(t),U(t)), t € [0,t], (10)
the initial conditions and the terminal state constraints
X(0) =x0, $(ts X(ty)) =0, (11)

where t¢ is a fixed terminal time, X(t) € R™ is the state vector, U(t) € R™ is the control vector and Xy is
a given initial state. We assume that the problem is controllable. Now, we set 1" = t; and approximate the
state and control vector functions as the finite sums

N
X(t) ~ PVX(t) =Y X;Li(ta),  U@E) = PYUE) =Y U,L;(ta), (12)
j=0
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where X; and Uj are totally (m+mn)(NN +1) unknown variables to be determined. Collocating the fractional

system dynamics (10) at the N +1 points {t; = (xl)é}l]io, where {z;}{¥, are Legendre-Gauss-Radau points
associated with the interval [0,%¢), we obtain

OCD?X(tZ):f(tl,X(tl),U(t,)), CDe(PVX)(t) Zdlj 5 1=0,...,N. (13)

where
J

] a
o Ltja (@ 71D U\ (o _
i F(l—a)TaZ Jj- < <T> )

k=1

Substituting Eq. (12) into Eq. (13), for {{}}¥, we obtain m(N + 1) collocation conditions
Zdl] —f(tl,PNX(tl) PNU(tl)> 0. (14)
Moreover, approximating the initial and terminal state constraints (11), gives m algebraic constraints as

N
PVX(0) - xo = 0, zp(tf, ij) = 0. (15)
=0

Finally, the cost functional is approximated by substituting Eq. (12) into Eq. (9) and utilizing the standard
Legendre-Gauss-Radau quadrature rule, to arrive at

N N
J~Jy = h(tf,ZXj) + Z@l g(xl,PNX(xl),PNU(xl)>, (16)
=0 1=0

where w; and x; are the standard Legendre-Gauss-Radau weights and nodes on the interval [0, %), respec-
tively. The finite-dimensional NLP problem arising from the above Radau PS discretization is to minimize
Eq. (16) subject to Eqgs. (14)—(15). This NLP problem can be solved by an appropriate globally convergent
algorithm.

4 Costate estimation

Let H = g(t,X,U) + ATf(¢t,X,U) be the Hamiltonian function where the vector function A(t) is the
costate. Using the Pontryagin Minimum Principle, the first-order optimality conditions of the continuous-
time FOCP (9)-(11) can be derived. Suppose that we have obtained the approximations X (¢) and U™ (¢)
to X(t) and U(t) using the Miintz PS discretization of Section 3. By substituting XV (¢) and U (¢) into
the first-order optimality conditions, we obtain

“Hy [ omy = EDRAW) = —gY — VA0, Aty) =hx (. XV () = 0Tex (1, XV (1), (A7)

Hy |xvuny =0=gl +EYA®). (18)
Eq. (17) is a system of linear FDEs of order 0 < o < 1 with boundary conditions, and Eq. (18) is a system of

linear algebraic equations for the unknowns of the vector A(t). Using a combination of these two equations,
estimations to costates can be obtained.
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Table 1: Values of the parameters for the FOC cancer model.

Description  Units Estimate value Description Units Estimate value
r1 day~? 1.5 cl cells 'day=" 1.5

79 day™? 1 Y1 day~! 0.08

73 day™! 0.75 Y2 day™! 2 x 1071
P1 cells™! 1 Y3 day~! 0.008

P2 cells™! 1 Y4 day~! 0.008

3 cells™! 1.5 S1 cells~'day=" 0.33

ay cells'day™" 0.5 b1 day ™! 0.01

as cells'day=' 1 h cells? 0.3

as cells~'day=™" 0.5 1 day ™! 0.2

a4 cells'day=' 1 ¢ day~? 0.1

as cells~tday™" 0.1

Table 2: Computational results of J and costate estimation errors for o = 0.8,0.9,1 and various alues of N.

N JN 8dyn EHx EHu
a=0.8

10 9.556 4.59 x 107° 4.08 x 1072 9.64 x 1072
15 9.55443 1.96 x 1076 1.56 x 102 8.25 x 1072
a=20.9

15 9.43610 8.76 x 1076 4.29 x 1073 2.97 x 1072
20 9.4360997 3.80 x 1076 9.34 x 1073 2.30 x 1073
a=1

10 9.288 1.49 x 1076 7.42 x 1073 9.23 x 1073
20 9.28790775 3.41 x 1077 6.27 x 10~* 2.58 x 1073

5 Numerical result

By substituting UV (¢) into Eq. (10), we have {D¢X(t) = f(t,X(t),UN(t)>, X(0) = xg. To solve this

FDE, we have utilized the Miintz collocation method to obtain the approximate solution i(t) Then we
define

e, =||X(t) - XNt H .
Moreover, let AV (t), be the costate estimations obtained using Eqs. (17)-(18). We define the accuracy
criterions for costate estimation as

EHy = max{HOCDtO‘)\N —i—HXHLOO(I)}, EHy = maX{HHUHLOO(I)}'

Now, consider the cancer model (1)-(2). The values of the weights are w; = 20, wy = 1 and w3 = 1
and the values of other parameters are given in Table 1. Also, initial conditions are T'(0) = 1, I(0) =
0.001, F(0)=4, N(0)=0.25, D(0)=0.5. We solved this problem for various values of N and « and
the numerical results are summarized in Table 2. In Fig. 1 and Fig. 2, the graphs of approximated state
variables, the control variable and costate variables are depicted. In this problem, Eqs. (17)—(18) evaluated
at TN(t), IN(t), NN (), FN(t), DV(t) and uN(¢), are used to estimate the costate functions. Indeed,
Eq. (18) gives an algebraic equation for estimating A5(¢) and then we solve the system of linear FDEs (17)
for estimating the remaining costates {\;(t)};_, (see Fig. 2). Based on the obtained numerical results, we
have the following observations: For all the considered values «, the tumor population decreases and the
normal cell population is renewed as functions of time. Furthermore, the immune cell population and the
number of fat cells increases over time. Moreover, after half of the time and eradicating most of the tumor
population, the drug concentration D(t) and dose u(t) decrease.
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Figure 2: Approximate costates for N = 15 and different values of a.

6 Conclusions

In this article, the pseudospectral method has been adopted for numerical solution of a class of FOCPs
with application to a fractional cancer model. A special family of the Miintz—Legendre polynomials was
used as an approximation basis. The proposed pseudospectral method is characterized by its simplicity,
efficiency, and high accuracy and can be readily implemented. A novel costate estimation procedure was
also established based on the first order optimality conditions. The accuracy and validity of the presented
method were demonstrated through numerical simulations.
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Abstract

Background: Anthropometric indices (AI) play a crucial role in identifying individuals at risk for
various metabolic disorders, including diabetes.The purpose of this study was to identify the diagnostic
ability of these indices to discriminate diabetes in the Azar cohort population. Materials and Methods:
Subjects who were diabetic in the baseline phase from 15006 participants in study of azar cohort population
were excluded and to follow up, a total of 13253 people was included in the analysis. Demographic
characteristics and 11 AI were measured. Skewed logistic regression modeling and adjusted risk ratio
(aRR) coefficients were used to evaluate the association between the anthropometric indices and diabetes.
The receiver operating characteristic (ROC) curve analysis was performed to compare the discrimination
of different anthropometric measures. Results: During the follow-up years, a total of 685 participants
developed diabetes. The measurements of the AI were significantly higher in subjects with diabetes
(P < .001). Body Roundness Index (BRI) and Waist height ratio (WHtR) exhibited the largest AUCs
for predicting diabetes onset risk (both AUC=0.6989) among these anthropometric measures. Significant
aRR for BRI and WhtR were3.69 and 7.89, respectively. Conclusions: The BRI and WtHR demonstrated
superior efficacy in detecting diabetes within the Azar Cohort population.

Keywords: Anthropometric, Incidence Diabetes, Modeling

1 Introduction

Diabetes is a non-communicable disease that manifests in both developed and developing nations. Anthro-
pometric indices (AI) play a crucial role in identifying individuals at risk for various metabolic disorders,

including diabetes. On the other hand, Al are recognized as cost-effective, straightforward, and non-invasive

'Speaker
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techniques for screening populations and early detection of obesity. Body mass index (BMI), waist circum-
ference (WC), waist-to-height ratio (WHtR), and waist-to-hip ratio (WHR) have historically been the most
utilized measurements in routine clinical practice (1). However, in recent years, new Al have been developed
as an alternative to traditional anthropometric measurements to enhance the evaluation of fat distribution
and its relationship to incidence rate of diabetes (2). The A Body Shape Index (ABSI) evaluates overall
and visceral fatness and is more closely linked to abdominal fat than BMI (3). The Body Roundness Index
(BRI) forecasts the quantity of total and regional fat and is regarded as a predictor of metabolic syndrome
in diverse populations, proving to be more effective than BMI in several research studies (4). The Body
Adiposity Index (BAI) is calculated from hip circumference and height to estimate the level of body fat
(5). The abdominal volume index (AVI) quantifies the amount of abdominal fat and is positively correlated
with metabolic syndrome (6). The weight-adjusted waist index (WWI) has been linked to cardiovascular
morbidity and mortality (7). The conicity index (CI) utilizes weight, height, and abdominal circumference
measurements to assess the level of obesity and fat distribution (8). Several studies have compared tra-
ditional and novel AI to discriminate diabetes and other related conditions. Zhang et al. (2016) found
that waist-to-height ratio (WHtR) and lipid accumulation product (LAP) were better indices for screening
metabolic syndrome (MetS) in the Kazakh adult population (9). Kavaric et al. (2017) aimed to assess the
reliability of visceral adiposity index (VAI) and LAP in individuals with type 2 diabetes mellitus (DM2)
(10). Yang et al. (2018) conducted a prospective study among elderly Chinese individuals to evaluate the
prediction ability of different anthropometric indices, including traditional ones like body mass index (BMI)
and novel ones like VAI, in predicting diabetes risk (11). Furthermore, Nayak et al. (2020) evaluated the
predictive performance of traditional and novel lipid combined anthropometric indices in identifying predi-
abetes (12). These studies collectively emphasize the importance of comparing traditional and novel Al in
discriminating diabetes and other metabolic disorders. Therefore, theaim of this study was to identify the

diagnostic ability of Al to discriminate diabetes in the Azar cohort.

2 Materials and Methods

2.1 Study Design and measurements

The data from the Azar cohort study that were collected from 15006 participants (aged between 35 and
70 years from a pool of 33,000 eligible individuals) were used in this research (13). For our study, subjects
who were diabetic in the baseline phase were excluded from the study. Although the follow-ups of the Azar
Cohort study are still ongoing, in this study the follow-ups until April 2022 were analyzed. Finally, a total
of 13253 people was included in the analysis. Full details of the Azar cohort study are provided in another
published article (14). This study was approved by the Ethics Committee of Tabriz University of Medical
Sciences (IR.TBZMED.REC.1402.943) with grant no.73580.

2.2 Statistical Analysis

Since in this study, the proportion of diabetic and non-diabetic people is not the same, we used skwed logistic
modeling approach for quantifying the relationship between antropometric indices and incidence of diabetes
events. The area of this curve was used to evaluate the diagnostic ability of a variable to discriminate the
true disease status of a patient. Data analysis was done using Stata software (version 17, Stata Crop, College

Station, Texas).
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3 Results

An overall 13,253 subjects (6,019 [45.4%] men, the average age of 48.9 & 9.17 years) were studied. During
the follow-up, a total of 685 participants developed diabetes. The measurements of the Al were significantly
higher in subjects with diabetes (P < .001)-not shown. As outlined in Figure 1, the AUC values of all
the AI ranged from 0.58 to 0.70. BRI and WHtR exhibited the largest AUCs for predicting diabetes onset
risk (both AUC=0.6989) among these anthropometric measures. Table 1 and Figure 2 show the association
between Al and Diabetes event. It can have been seen that Significant aRR for BRI and WhtR were 3.69
and 7.89, respectively.

Sensitivity
0.50 0.75 1.00

0.256

0.00

T T T
0.00 0.25 0.50 0.75 1.00

1-Specificity
— BRI ROC area: 0.6989 —— CI ROC area: 0.6482 ABSI ROC area: 0.5906
WIHR ROC area: 0.6989 = BMI ROC area: 0.6457 — Wrc ROC area: 0.5824
— WWI ROC area: 0.6758 == WAI ROC area: 0.6453 — Reference
— AVIROC area: 0.6748 — BAIROC area: 0.6127

Figure 1: Comparison of the receiver operating characteristic (ROC) curves for separate anthropometric
indices

Table 1: Incidence Risk Ratio of antropometric indices base on skewed binary logistic modeling*
Index aRR*™* 95% Lower CI IRR 95% Upper CI IRR P

BRI 3.69 1.79 7.61 < .001
WWI  7.89 2.40 18.90 < .001
AVI 1.39 1.17 1.68 < .001
BMI 1.12 1.10 1.14 < .001
BAI 1.06 1.05 1.07 < .001
Wrce 1.21 1.15 1.27 < .001
WC 1.06 1.04 1.09 < .001

*4 AT removed from model because of collinearity
**Risk Ratio Adjusted by demographic factors

61



Neda, Gilani

WC *
Wirc = »
.ﬁ EMI— 5
= o
2 :
£ BRI L ——
] :
2 :
% 1
. : —_
Zww :
AV i HH
BAI Q
L] | L]
0.1 1 10 100

Adjusted Risk Ratio

Figure 2: Forest Plot of adjusted risk ratio of Al

4 Discussion and Conclusion

The present study showed that The BRI and WtHR demonstrated superior efficacy in detecting diabetes
within the Azar Cohort population. After them, WWI and AVI were in the next ranksb with AUC respec-
tively. In this relationship, Chen et al (2023) recently published a study indicating that there is a noteworthy
correlation between WHtR and the occurrence of diabetes /impaired fasting glucose in both the sub-cohort
and the authors recommended WHtR as a valuable predictor for diabetes (15). Park et al (2023) reported
that the WWI is a reliable anthropometric measurement for predicting sarcopenic obesity in individuals
with type 2 diabetes, and it could serve as a suitable indicator for predicting various cardiometabolic risk
factors in the elderly population (16). Of course, in their study, 515 participants were investigated, while in
our study, 15,006. The present study showed that The BRI and WtHR demonstrated superior efficacy in
detecting diabetes within the Azar Cohort population. After them, WWI and AVI were in the next ranks
with AUC respectively.
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Abstract

A size effect in blood flows has been studied in the present investigations with a view to include effects
of pulsatile magnetic and body acceleration in the flow situations. The importance of the studies in the
cardio-vascular system studies with its applications in blood diseases has been highlighted. The model
has been compared to that of non-pulsatile models and shown that the present model yields better results.

Keywords: Physiological fluid dynamics, Heart Attack, Blood flow modelingShear Stress factors

AMS Mathematical Subject Classification [2010]: 76A05, 76DXX, 76BXX

Introduction

Modeling and simulation has paved the way in grater details for understanding system under study. Be it a
heat engine, space science or design of remotely controlled robots for defense applications, modeling has not
only given effective results but also simplified financial aspect to greater details. In view of its importance
modeling in Bio-fluid dynamics has been taken up in the present investigations. Blood flow modeling has
been studied by various authors [1] with a view to include various aspects of characteristics of blood flow
of in their model [Anomalies of blood flow (FLE, IFLE)[2], time independent [3], time dependent [4] elastic
nature [5] and so forth]. In the present model the study is aimed at including most of the aspect in the model
and to apply the system studies for various blood diseases. Also the model has been accounted for the size
effects nature of flow [effects of blood cells in bulk flow which produces net effects which are different then
Navier-Stokes equations considered by continuum approach|.There are extensive theories [6] to account size
effects in blood flows. In the present model, micro-continuum approach proposed by V.K.Stokes [7] has been
used. One of the advantages of taking Stokes approach over other theories is that, the present approach is

simple and do not account for coupled equation for both blood cells and bulk flow independently.
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Analysis

The basic equation governing the flow for the pulsatile nature of blood is given by

ou dp
PE = —@ + ,uvzu — T}V4u (1)
It is assumed that flow is laminar and turbulent effects in the body are neglected. Equation (1) in
cylindrical polar co-ordinates under the periodic body acceleration in the presence of magnetic field is given

by
ou
Por
Where u(r,t) is the velocity in the axial direction, p and u are the density and viscosity of blood, 1 is the

+ nV3(V?u) — uV?u+ oBiu = —g]; + pG (2)

couple stress parameter, o is the electrical conductivity, By is the external magnetic filed and r is the radial

2_ 11/ 9
Vi= r or T@T (3)

coordinate.

N
\

Figure 1: Blood flow in straight tube

For the initial calculation of velocity, flow rate (Q), pressure gradient and body acceleration are assumed
to be of the form [Ref.(8)].

—% = A+ Ajcos(wt) , t>0 (4)
G =agcos (wit+ @) t>0 (5)

Where Ag the steady-state part of pressure gradient, A; is the amplitude of the oscillatory part.w = 27 f
and f is the heart pulse frequency, ag is the amplitude of body acceleration,w; = 27 f; and f; is body
acceleration frequency, & is the phase difference, z is the axial distance and t is time. Flow variables have

been normalized by using following relations:
u = m , T = E s AO ,u/iwAO y Al = Iu]iwAl , Qg = —ap , 2 = E (6)

Equation (2) simplifies to [after dropping stars]

ot ror \ or

RN (5w

9 2 .
Where @? = a* ﬁ , couple stress parameter, a = a* Womersley parameter, H = H*, /ﬁ is the Hartmann

1
aQaQ% = a2 Ay + a?Ajcost + @ag cos(bt + &) + o’ (8 <’r g:))

number, and R is the radius of the pipe.

R2
= A H = BR,/Z | a=R/JZL  p="" (8)
n pl 1 w
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Shear Stress

Shear stress 7,, which is one of the physiological importance parameters has been computed by using

following relation

B Ou(r)
Trz = _MT (9)

Using Equation (12), Shear stress simplifies to

RESULTS AND DISCUSSIONS

In order to compute shear stress to flow, the data on viscosity u for various blood diseases are required and the
same has been taken from [7] and shown in table one. The remaining data ona*, Ay, Ay, H*, ag, &, t, band a
have been taken from Shakera [7]. The variation of shear stress to flow for various set of data has been
computed and shown in figure 2-3. The comparison of the present model to that of time-independent model
[8] has been indicated by solid lines in the figure.

The results of present findings have also been compared to that of Newtonian results by computing the
model for @* = 20 t0 80]. The results indicate that, the time dependent values are in comparison time
independent lower results. Also a reversible trend that of resistance to flow has been observed here also like

that of previous observations.

Table 1: Viscosity Data [Ref.7]

Diseases w,cP | p1, cP
Normal Blood 3.81 1.2
Polycythemia 6.75 1.2

Plasma cell Dyscrasis | 4.99 1.2
Hb.ss 3.29 1.2

Polyeytivermia
——— 7]
1 1 _.f"f o -
08 0B 7 _‘_-"‘ " =1
Pl __,.-"' =2
06 06 -z
9:\ # % s @ =3
04 o 1 0.4 ommd
time indepandant o =5
02} g ... time dependent 1 02 ]
o o
o 1 2 ] 4 5 o 1 2 3 4 & =] 7
- T
o -
1 1 ._",'.'--“ 3 1
oe oe
o e o 0e
= =
0.4 0.4
(1] o2
o o
] 1 2 3 4 5 B o 1 2 3 4 5
£ r

Figure 2: Shear Stress for straight tube, different @*’s [H*:2, Apg=2, Ai=4,a0=3, ¢ = 15°, t =0.5, b=
0,a=1].
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Figure 3: Shear Stress for straight tube,different @*’s [H =2, Ag=2, A1=4,00 =3, @ = 15°, t = 1.5, b=
1.5,a = 5].

CONCLUSIONS

Size effects in blood flow have been studied in the present studies. One of the main thrust in the modeling
approach is to include effects of blood cells (mainly Red Blood Cells) on the flow situations under the
influence of periodic and body accelerations. Effects of body accelerations and magnetic have also observed
to influence significantly. The utility of model has also been explored by applying it for various blood
diseases and comparing it with normal case. The results indicate that shear stress to flow have significant

variations with applications of body acceleration and magnetic induction.
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Abstract

In this article, we write the EIR mathematical model of cystic fibrosis and derive the equations related
to this model. Also, by using the definition of Reynolds number and its application in fluid mechanics,
we investigate the types of air flow and specify the type of each of them. This number includes 2 quiet
and disturbed intervals. According to this information, the result obtained is that the Reynolds number
of the person suffering from this disease will be in the disordered category.

Keywords: EIR model, Reynolds number, types of air flow, cystic fibrosis, Turbulent

AMS Mathematical Subject Classification [2010]: 13D45, 39B42

1 Introduction

In certain disorders, a measurement that serves as a reliable indicator of the patient’s prognosis can be
used, such as: 1. PSA, or prostate specific antigen 2. The kidney’s Glomerular Filtration Amount[2] 3.
The quantity of HIV-positive CD4 T lymphocytes[3]. Precise mathematical models ought to encompass the
shared phenomenon of longitudinal alterations in this assessment and death, which may be linked to shifts
between discrete patient conditions, like obtaining or losing a pathogen[5].

In this article, we primarily aim to provide a model of the progressive, genetic lung condition known as
cystic fibrosis. The forced expiratory volume in one second (FEV1) is typically used to measure this disease,
which is brought on by a mutation in the CFTR gene[5].

The interplay between long-term bacterial infections and the inflammatory immune response generated to
combat them is primarily responsible for the decline in FEV1. The Reynolds number and how to use it to

determine the kind of airflow are covered in the following.
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2 Mathematical model of cystic fibrosis transmission

The genetic illness known as cystic fibrosis is brought on by the introduction of two faulty genes into
an individual’s body at birth. In actuality, the majority of people are usually unaware that they are
carriers. It should be mentioned that family weddings might sometimes be the cause of this illness. The
EIR mathematical model of cystic fibrosis is introduced for the first time in this article. Three compartments
are included in this model: Babies with two faulty genes who can spread the disease are included in the
first compartment, I(t). Babies in the second compartment, E(t), have a faulty gene and are regarded as
carriers but are not contagious. Those who are healthy or who can only be healed by lung transplantation

are included in the third compartment R(t). The equations related to this model are as follows:

I'(t) =bN + e I(t)E(t) + e2E(t)* + esI(t)R(t) — dyI(t) — kI(t) — yI(t)
E'(t) = N(1 - b) + esR()E(t) — e I(H) E(t) — do E(t) — ex E(t)>
R'(t) = e4R(t)? — esI(t)R(t) — e3R(t)E(t) + vI(t) — d3R(t)

3 Determining the types of air flow in the lung using Reynolds number

Reynolds number, which is a dimensionless quantity in fluid mechanics and one of the most important
parameters in determining whether the flow is calm or turbulent, is used to predict the flow pattern. This
number is the result of the ratio of inertial force to viscosity. If the flow moves in a closed channel or in
a pipe, the Reynolds number depends on the hydraulic diameter of the pipe (dj) and its length L, and in
the case that if the pipe is cylindrical, its hydraulic diameter is actually the same diameter. It will be a
pipe. The respiratory system is a biological system whose task is to supply oxygen to body cells and remove
carbon dioxide resulting from metabolism. The organs of this system are the nose, pharynx, larynx, trachea
and lungs. In this article, we will examine air flow and its types in the lungs. The respiratory system is like
a tree that starts from the trachea and branches 23 times before reaching the alveolar sacs|7, 8]. According
to the mentioned cases, the mathematical definition of this number for the flow through a pipe of diameter

d is as follows
Finertia _ ,OVL _ E

Fliscous H v

R, = (1)
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0 2300 2300 4000 4000 infinity
Laminar Transitional Turbulent

So the terms used are as follows:
p fluid density in (kg/m?)
V fluid velocity in (m/s )
L is the characteristic length of the fluid in (m)
v kinematic viscosity of fluid (m?/s)

The volumetric velocity of the phase flow is obtained through the following equation
p=V.A (2)

The Reynolds number is recast in terms of flow rate using equations (2) and (1) since A is the pipe’s

cross-sectional area and V is the fluid velocity.

d = 2r, V:E, v:H
A p
By inserting the values mentioned in equation (1), we will have
LN 2 x2r
.R6:¥:7Aﬁ r :77'”‘2E
2/)95 ’
So Re = T

The average Reynolds number has been determined by applying equation (3). Based on the kind of
flow, several lung generations have been categorized using the following ranges of Reynolds numbers[6].
The Reynolds number is represented by the numbers 0, 2300, 4000, and infinite. The ranges for laminar,
transitional, and turbulent flow are defined differently in experiments, and these definitions are given above.
There are two types of flows: calm and turbulent. The criterion for identifying a smooth or turbulent flow
is the Reynolds number. A laminar flow is one in which the fluid follows predetermined routes and travels

in an ordered fashion. However, the fluid is susceptible to strong mixing processes and flow variations in its

71



Fatemeh Hasanzadeh, Zahra Hasanzadeh

turbulent flow. Three-dimensionality, periodicity, temporal and spatial fluctuations, as well as random and
unexpected behavior, are some of the most significant characteristics of turbulent flow. Turbulent flows have
a variety of durations and times, and they happen at elevated Reynolds numbers. These streams comprise
an ever-changing environment. Furthermore, mixing is the primary distinction between this kind of flow

and slow flow.

Table 1. Reynolds number result.
GENERATION REYNOLDS AIR FLOW TYPE

1 17706 Turbulent
2 13061 Turbulent
3 9599 Turbulent
4 7114 Turbulent
5 4426 Turbulent
6 2845 Transitional
7 1778 Laminar
8 1082 Laminar
.., 23 < 1000 Laminar

4 Conclusion and Results

It is clear from the diagram that there is an inverse relationship between viscosity forces and the Reynolds
number and that the Reynolds number is directly related to inertial forces. Determining if the flow is calm
or turbulent is a crucial usage of this value. For instance, the flow will be smooth if the Reynolds number
is less than a given value and turbulent if it is larger. In actuality, the crucial Reynolds number is the value
at which the fluid flow starts to become turbulent, and this specific value is known as such. orange This
article examines the IER model of cystic fibrosis disease and reveals that it is transmissible and does not
affect any susceptible individuals. to the infant only through two faulty genes from the parents, and to use
this information to further research the Reynolds number and identify the kind of air flow. The number was
paid for by us. Lastly, it should be noted that the data obtained indicate that lung airflow in individuals
with cystic fibrosis is consistently disrupted. The next articles will look at FEV1 and how it relates to the

affected person’s lung, the kind of flow, and Reynolds number.
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Abstract

Kheiri This research develops a dynamic model of cancer formation that includes interactions between
activated immune system cells, tumor cells, and healthy tissue cells, obviously resulting in chaotic behavior.
In reality, the conditions under which the dynamics of chaos can be observed, as well as the ways in which
this model differs from the others, have all been examined. Furthermore, the existence of chaos has been
reliably proven by computing the Lyapunov power and system dimension.

Keywords: chaotic dynamics, tumor growth, Lyapunov exponent, Lyapunov dimension, and cancer
model
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1 Introduction

It should be noted that the primary components of mathematical models for tumor growth are immune
system and host cells, and that these interactions may produce different outcomes. These models have been
extensively researched in the literature to comprehend the mechanism underlying the disease and forecast
its future behavior. An ordinary differential equation (ODE) -based second-order model that encompasses
the tumor cell and effective immune cell populations was presented by Kuznetsov et al. Depending on the
system parameters, these models can provide quite interesting dynamics even with two cell populations.
and clarify a few crucial elements of the development of cancer [1]. Depilis and Radonskaya used optimal
control theory to study the impact of chemotherapy treatment, added normal tissue cells in their model, and
carried out fuzzy space analysis [2]. Kirschner and Panetta also looked into how tumor cells proliferate when
immune cells are present. Tumor cell antigen is critical for the immune system to recognize tumor cells,
as evidenced by the effectiveness of the cytokine IL- 2, which is crucial for immune system activation and
stimulation [3]. The majority of the intriguing dynamics have been found to revolve on symbiotic equilibria,
which may lead to variations in cell populations. Conversely, models of tumor formation that incorporate
interactions across cell populations mostly rely on population dynamics, which are inspired by predator-prey

models. Although a Hunter derivative that can also display chaos has been developed, it is yet unknown
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whether dynamic chaos exists in cancer models [4]. Actually, this study constructed and examined a very
basic tumor growth model. This displays the interest disturbance parameter’s range [5]. Furthermore, the
three cell types in this model are T(t) tumor cells, H(¢) healthy host cells, and E(t) effective immune cells.
Even while the model in question shares terminology with other cancer models, it nonetheless illustrates
chaotic dynamics, one of the most important issues for nonlinear systems. It’s been verified. This article’s
goals are to present the biological model and its relationship, normalize the system states and minimize
the number of parameters in order to streamline the analysis, which then goes on to examine the stability
and balance of the system and displays the turbulent absorber in a matter of seconds. Lastly, the article
addresses the range of parameters. The system’s Lyapunov dimension and power calculations have reached

the required result [4].

2 Mathematical model of cancer

Three cell populations are included in this model: T'(¢) represents the number of tumor cells at time ¢, H(t)
represents the number of healthy host cells, and F(t) represents the number of immune cells that are active
at the same time. Additionally, the goal of this model is to describe the interaction and competition between
these cells [4].

dr T
— =rT|(1—— ) —apTH-a3TFE 1
it (1) —entH —anTE, 1)
dH H
— =roH |1—— ) —an1TH 2
at ( I<:2> a2t (2)
dE T’3TE
— = —a51TFE —dsFE 3
dt T+k‘2 a3 34, ( )
By assuming

T H

T =71, T =2 T = I3,

k1 ko ks

The equations (1)-(3) are converted into [4]

dzr

ditl = 551(1 — 331) — a12r1r2 — a13r1x3, (4)
dzr

7; = row2(l — z2) — an1 7172, (5)
drs T3x1X3

at o1 + ks a31r1T3 33 ( )

3 Equilibrium points of the system

Because the aim of this article is to find system dynamic chaos, the authors focused on balance and parameter
range to achieve system chaos. More intriguingly, they were able to obtain the system’s local behavior
by linearizing the system and calculating the Jacopin matrix. The system has eight equilibrium points,
designated E1 — Fg, according to the aforementioned Jacopin matrix. Fj is a saddle point, whereas Es and
E6 is stability and instability depend on the value of ais . For this reason, the eigenvalues are unstable if
a12 > 1 and stable if a12 < 1. Point Ey will serve as a saddle. Furthermore, Fo will be a destroyed point if

a12 = 1. The computed results indicate that point Ej3 is a saddle point and point E4 and E7 are not chosen
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because of their mixed specific values; point Ej5 is unsuitable since of its biological attributes; and FEyg is

unsuitable for examination because of its non-positive value [4].

1 —2x1 — a1272 — a13x3 —ai2x1 —a13x1
J = —ag1xy T — 2T2$2 — a21%1
o — a1z 0 2 —aziwy — dg
The following are the equilibrium points:
Table 1: Equilibrium points [4].
By E, E3 Ey E5 Eg

(0,0,0) (0,1,0) (1,0,0) (0.132,0,0.347) (0,1,0) (0.13,0.66,0.079)

A =1 A =0.6 A =-1 | Ay =-0.06640.61: | Ay =0.6 A1 = 0.06143

Ao =0.6 Ao =0 Ao =—0.9 | Ag = —0.066 — 0.617 | Ao = —0.9 | Ao = 0.403 4+ 0.2351%
A3=-0.5] A3=-0.5] A3 =1.55 A3 = 0.4012 A3 = 1.55 | A3 =0.403 — 0.2351¢

saddle saddle Snail Snail

4 Chaotic dynamics

The set of chosen parameters of a chaotic system with Shilnikov-like connections is displayed in this section,

along with the calculation of the Lyapunov’s power and dimension. Specifically, n orthogonal tangent vectors

vy, -+, U, are chosen as initial conditions such that p = Jp, which is solved by each of V} — V,,, and V' (¢) is
obtained for 0 < ¢t < t1, so m, T are defined as follows [4]:

tr —to

m = ff

s T:ti+1—ti, Vz:O,,m

The following formula is used to calculate orthogonal vectors.

o — Up— < Up, Ul _q >V, — - — < vp,v] >0
T lop— < wop, vy >0l — = <, v) >4
NP(Z) = ani < vnvv;z—l > v;z—l - =< ’Un,’Ui > U/1||,

Finally, the following equation gives the Lyapunov dimension.

b T I ()
m—0o0 mT ’

Zi):l Hp

dy=j+ :
i + 1

Hp =

Additionally, the Lyapunov exponent is produced using the same method as previously, and the following

set of parameters for the Lyapunov exponent will result.

1 = 0.021468, s = —0.0055424, s = —0.540526.

5 Results

This work constructed and analyzed a new population dynamics-inspired model for the evolution of cancer
cells, which includes terminology to characterize the competition and interaction between tumor cells and
other body cells, such as immune cells. It shows functional and sound tissue cells. Furthermore, by displaying
Shilnikov-like connections, this model demonstrated chaotic dynamics. It further demonstrated chaotic
dynamics by determining Lyapunov’s power and dimension and fractal parameters. possesses it. While
some research suggest that some cancer-like models might show chaos, they haven’t shown it to be present.

It’s heartening [4].
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Abstract

The traditional drug design process is highly expensive, often causing delays in the availability of
life-saving treatments for patients. This presents a major challenge for developing new medications. In
contrast, deep learning has greatly accelerated the development of new therapies. This study explores the
potential of a recurrent neural network, specifically using bidirectional long short-term memory (Bi-LSTM)
cells, to learn and infer meaningful chemical rules. This network is trained using existing compounds
represented by SMILES strings (Simplified Molecular Input Line Entry System) and can generate new
drug molecules with desirable properties. The properties of these molecules are fine-tuned using a dataset
of drug-like molecules. The generated compounds and the training data set show a similar distribution in
terms of predicted logP, molecular weight, hydrogen bond acceptors and donors, topological polar surface
area, and rotatable bonds. As assessed by SwissADME, some of these compounds can be synthesized.

Keywords: Deep Learning, Drug Design, Recurrent Neural Network, Bi-LSTM, SMILES Strings
AMS Mathematical Subject Classification [2010]: 13D45, 39B42

1 Introduction

In recent years, the merging of artificial intelligence (AI) with drug discovery has sparked a revolutionary
approach to designing molecules. At the heart of this transformation are deep learning techniques, particu-
larly recurrent neural networks (RNNs) [1] like bidirectional long short-term memory (Bi-LSTM) networks
[1]. These innovations promise to overhaul drug development by integrating computational creativity and
efficiency, thereby complementing traditional, labor-intensive methods.

Deep learning offers an exciting frontier in pharmaceutical research for generating novel drug molecules.
By leveraging the extensive data stored in molecular structures, often represented as simplified molecular-

input line-entry system (SMILES) [2] strings, researchers can train neural networks to understand the
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intricate connections between chemical structures and their properties. This method not only speeds up the
discovery of potential drug candidates but also broadens the exploration of chemical space beyond traditional
methods.

Recent studies have highlighted the effectiveness of Bi-LSTM networks in capturing the sequential depen-
dencies found in SMILES strings [3]. This capability enables the generation of diverse molecular structures
that are pharmacologically relevant. The ability to create molecules with desired biological activities, while
also meeting physicochemical constraints, represents a notable advancement in computational drug discov-
ery.

This paper delves into the significant impact of deep learning methods, specifically Bi-LSTM networks,
in the creation of drug molecules. By training on datasets tailored for drug-like compounds, which include
annotated SMILES representations, researchers can harness these models to navigate the intricate realm
of molecular design with precision. Through this perspective, the study seeks to highlight the potential of

Al-driven approaches in expediting the discovery and advancement of therapeutic agents.

2 Main results

The clean drug-like dataset (p13) was downloaded in SMILES format from the Zincl2 [4] [5] website. After
extracting the data from its compressed format, it was converted into a data frame using Python 3.1 [6] and
Pandas [7]. The resulting data frame contained two columns: ”smiles” and "name” with columns separated
by spaces.

Next, the data frame was saved as a CSV file, including the column names and excluding row numbers.
Using Pandas, the information from the “smiles” column was then aggregated into a single text string.

First, the 35 unique characters present in the "SMILES” text were identified. Each of these characters
was mapped to a unique integer, resulting in a dictionary where each unique character was associated with
its corresponding integer value. Subsequently, the total number of characters and unique words in the
dataset were counted, yielding 7,825,572 characters and 36 unique vocabularies.

The data was then segmented into smaller sequences, each with a fixed length. For each sequence, an
input vector and a corresponding output value were generated for model training. A total of 7,825,562
sequences were produced for training purposes.

The shape of the input array was then transformed into a three-dimensional array with dimensions
(number of sequences, sequence length, 1). The data was normalized, and the output values were encoded
using one-hot encoding.

A Recurrent Neural Network (RNN) was developed using Keras [8] with TensorFlow [9] as the backend,
consisting of six layers. The first layer is a bidirectional LSTM with 64 units, processing data in both
forward and backward directions, enabling the model to capture temporal dependencies in both directions.
The input shape for this layer was specified. The second layer is another bidirectional LSTM, but with
128 units, followed by a third bidirectional LSTM with 256 units, continuing the sequence processing. The
fourth layer mirrors the second, also being a bidirectional LSTM with 128 units. Layers one through four
return full sequences to the next layer, maintaining the flow of data across the network. The fifth layer,
similar to the first, is a bidirectional LSTM with 64 units, but it only returns the last output instead of
the full sequence, passing only the final output to the next layer. The sixth layer was a fully connected

layer with 64 units, corresponding to the number of output classes. This layer used the softmax activation
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Figure 1: Architecture of Bidirectional Long Short-Term Memory (Bi-LSTM) Cells.

function, which is suitable for classification tasks as it produces output values that sum up to 1 (Figure 1).
The model was compiled using categorical_crossentropy as the loss function and Adam as the optimizer,
with accuracy as the evaluation metric. During training, the best model weights were saved based on the
lowest loss value.

The neural network was trained on 200,000 SMILES strings for 10 epochs with a batch size of 64.
Subsequently, the saved model weights were loaded, the model was compiled again, and a random string
of SMILES data was selected. Finally, a sequence of strings was generated. The model produced 152
SMILES strings, one of which lacked molecular properties, and two molecules with desirable properties were

repeatedly generated (Figure 2).

CH, H.C

H,ic CH, \IIJ N
—
-
o~ NH o HH

Figure 2: Molecules generated by our model.

Drug-like compounds are defined by the following properties: logP < 3.83, molecularweight(MWT) <
269.30, numbero frotatablebonds < 6, topologicalpolarsur facearea(T PSA) < 55.40, hydrogenbonddonors <
1, and hydrogenbondacceptors < 3. According to Lipinski’s Rule of Five, drug-like molecules generally ad-
here to no more than one of the following criteria being violated [10]:

1. No more than 5 hydrogen bond donors (total of nitrogen-hydrogen and oxygen-hydrogen bonds).

2. No more than 10 hydrogen bond acceptors (total number of nitrogen and oxygen atoms).

3. Molecular weight less than 500 Daltons.

4. Calculated octanol-water partition coefficient (Clog P) not greater than 5.

Figure 3 shows the molecules evaluated using SwissADME [11]. One of the crucial aspects considered for

pharmaceutical compounds is pharmacokinetics, which relates to the movement of drugs within the body.
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Num. heavy atoms 10 CYP2C19 inhibitor Yes
hhum. erom. heavy atoms 12 CYP2C9 inhibitor Yes
Fraction Csp3 0.24
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Num. H-bond acceptors 1 CYP3A4 inhibitor No
Num. H-bond donors 1 Log K}, (skin permeation) -4.80 cm/s
Molar Refractivity 79.93 Druglikeness
TPSA 29.10 A2 Lipinski Yes; 0 violation
Lipophilicity Ghose Yes
Log Pojw (LOGP) 292 Veber Yes
Log Pos (XLOGP3) 4.29 Egan Yes
Log Pow (WLOGP) 4.05 Muegge Yes
Log Pojy (MLOGP) 4.02 Bioavailability Score 0.55
Log Poyy (SILICOS-IT) 3.88 MedicinalChemistry
PAINS 0 alert
Consensus Log Popw 3.83 Brenkc oalert
Leadlikeness No; 1 violation: XLOGP3>3.5
Synthetic accessibility 1.51
®
HoO@> Water Solubility
ne. o Log S (ESOL) -3.32
ﬁ Solubility 1.30e-01 mg/ml ; 4.84e-04 mol/
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Log S (Ali) -3.61
Solubility 6.61e-02 mg/ml ; 2.46e-04 mol/l
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: 8 INSATU poLar  LOG S (SILICOS-IT) -5.40
Solubility 1.08e-03 mg/ml ; 4.01e-06 mol/l
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ihisoLy Pharmacokinetics
SMILES CCOC(=0)cicec(ce1)C(=0)Neiceecet Gl absorption High
Physicochemical Properties BBB permeant Yes
Formula C16H15NO3 P-gp substrate No
Molecular weight 269.30 g/mol CYP1A2 inhibitor Yes
Num. heavy atoms 2 CYP2C19 inhibitor Yes
Num. arom. heavy atoms 12 CYP2C3 inhibitor No
Fraction Csp3 0.12
Num. rotatable bonds 6 CYP2D6 inhibitor Yes
Num. H-bond acceptors 3 CYP3A4 inhibitor No
Num. H-bond donors 1 Log Kp (skin permeation) -5.96 cm/s
Molar Refractivity 76.74 Druglikeness
TPSA 55.40 A2 Lipinski Yes; 0 violation
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Figure 3: Properties of the resulting molecules.

It examines how the body affects a specific drug after administration through mechanisms of absorption,
distribution, metabolism, and excretion (ADME). The primary goals of pharmacokinetics are to determine

the onset, duration, and intensity of a drug’s effect [12].

Consequently, recurrent neural networks with Bi-LSTM cells can be trained to generate new, chemically

acceptable molecules, as evaluated by SwissADME.
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Abstract

In this article, the precipitation forecast in the west of Sahand Mountain in East Azarbaijan Province
has been investigated. Satellite data and these algorithms, often do not match the measured data at
weather stations. Contradictory forecasts by these algorithms, confuse meteorologists. To overcome this
problem, we propose two special case of artificial neural network to modelling the 8 algorithms together.
The neural network receives the satellite data of previous years and compares them with the data measured
in weather stations. After training, the neural network predicts the rainfall from the data of the above
satellites algorithms with admirable accuracy.

Keywords: Weather satellites, climate data records, radial basis neural network, Generalized regression
neural network.
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1 Introduction

Today, artificial intelligence has conquered many branches of science. The ability to learn artificial neural
networks, as one of the important branches of artificial intelligence, has turned it into an important tool in
identifying the behavior of a system and consequently predicting the future of that system. The weather
condition is one of the fields whose prediction is very important. The use of neural networks in rainfall fore-
casting goes back decades. In the 1997, Chuan, use the artificial neural network to Weather prediction.[1] In
the 1999, Hall, use the neural network for Precipitation forecasting.[3] In 2001, Luk, presented an application
of neural networks for rainfall forecasting.[4] In 2005, ferreira, introduced the neural network technique to
predict rainfall in City Sao Paulo region in Brazil.[2]

Today, weather forecasting is usually done with the help of satellites. Satellites measure parameters of
atmospheric conditions and predict the amount of rainfall in a region. Often, the predictions of satellites do
not agree with the data measured by meteorological stations, or the predictions of satellites are contradictory.
To overcome this problem, we have used radial base artificial neural networks. The proposed neural network
receives the forecasts of 8 satellites and provides a more accurate forecast from their combination.

!Gholam Reza Zaki
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2 Preliminary

In this section, we introduce the satellites and the parameters measured by them. Eight groups of data ob-
tained from satellites and related algorithms are: CCSCDR, CCS, PDIR, PERSIANN, CDR, FARLY ,
LATE, FINAL. They measure several atmospheric parameters and predict the amount of rainfall in a
region with the help of their own algorithms. We have the amount of rainfall predicted by these eight
satellites for 19 meteorological stations in west of Sahand Mountain (East Azarbaijan province) for 13 years.
On the other hand, the amount of rainfall measured every day has been recorded in each of the stations
of the province. In most cases, satellite forecasts are contradictory and do not correspond to the amount
of precipitation recorded in the stations. For example, on 13/04/17,14/04/17 and 15/04/17 we see the
forecast of these eight algorithms for Azarshahr station in Table 1. This is despite the fact that 49 mm of
rainfall has been recorded for the above station in date 14/04/17. This rain caused floods and many human
and financial losses. To focus more on the subject, we only examine Azarshahr station. Table 2, shows

Table 1: Rainfall forecast by each of the eight algoritms for Azarshahr station in three consecutive days.

| Date | CCSCDR | CCS | PDIR | PERSIANN | CDR | EARLY | LATE | FINAL |
13/04/17 12 26 [ 11 12.07 8 [0.624.4 [ 0458 [ 1.902
14/04/17 4 9 5 9.34 14 | 8835 [ 9.184 | 14.758
15/04/17 0 0 0 1 0 0 0 0

three types of errors for Azarshahr station during 4746 days (13 years). The first row is the mean squared
error(M SE), the second row is the maximum absolute error(MAFE) and the third row is the norm 2 for
error(Normsg). The prediction of the PERSIAN N data is better than the prediction of the other algorithms.

Table 2: Errors of prediction of each algoritms.
| Error | CCSCDR | CCS | PDIR | PERSIANN | CDR | EARLY | LATE | FINAL

MSE 27.9 56.9 12.5 8.4 10.6 15.4 16.4 11.9
MAE 89.0 275.0 | 74.0 39.7 35.0 58.4 77.0 40.0
Norma 364.1 519.7 | 243.9 199.4 224.1 | 270.8 279.2 | 2375

3 Proposed method

In order to make better predictions, we propose the use of artificial neural networks. Two types of neural
networks have performed better than other networks. These two types of networks are: radial basis neural
network(Net,;) and Generalized regression neural network(Netg,,,). Table 3 shows the types of errors of
these two networks for Azarshahr station.

Table 3: Three types of errors for predictions of two types of neural networks.

Error Netrp ‘ Netgrnn ‘

MSE 2.9893 2.3808

MAE | 22.5735 | 22.7705
Normg | 119.1354 | 106.3207

As can be seen, each of the networks was able to reduce the error M SFE by at least three times. Figure 1
compares the amount of rainfall predicted by the PERSIANN with the amount recorded at the station
for 4746 days.

Figure 2, predictions of network Net,; and Figure 3, predictions of network Nety,, compare with the
amount recorded at the station for 4746 days. As can be seen, each of the two neural networks have predicted
the amount of rainfall of 49 mm in day 14/04/17, while the PERSIAN algorithm has predicted it to a
much lesser extent.

84



Modeling and forecasting of rainfall from satellite data using Net,, and Netyrn,

Azarshahr
PERSIANN
50 T T T T T T =73 T T
o PERSIANN
45 - K Station 7
*
40 .
35 | k- E
E 30 * u
£ *
=25F% % O © 4
= EE o *©
& 20 s B ook R R * % o Ro M 4
%O mO Ko D x =
el 7 ]
10 T

¥

1000

Day Index

1500 2000 2500 3000 3500 4000 4500 5000

Figure 1: Comparing the amount of rainfall predicted by the Persian satellite with the data recorded by the
Azarshahr station for 4746 days.

50

40

Rainfall (mm)

Figure 2: Comparing the
station for 4746 days.

50
a5
40
35
30

25

Rainfall (mm)

20

15

10

Azarshahr
Radial Base Function Neural Network
T T T T T T § T T
(=} rb-net
s ks Station
=

1000 1500 2000 2500 3000

Day index

3500

4000 4500

5000

amount of rainfall predicted by the Net,;, with the data recorded by the Azarshahr

Azarshahr
Generalized Regression Neural Network
o grnn-net
B x Station N
k-3
- = 4
- O -
=
- o .
% = o k-3 - =
T R =0 s *® o 7
R o o = = =,
* Cg
Q o

1000

1500

2000 2500 3000
Day index

3500

4000 4500

5000

Figure 3: Comparing the amount of rainfall predicted by the Netgyp, with the data recorded by the Azar-
shahr station for 4746 days.
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4 Conclusion

It is very valuable to use appropriate neural networks that take the predictions of 8 algorithms and provide
better predictions. In this paper, two types of neural networks were proposed, which reduced the MSE
error by three times. Needless to say, the author did not get favorable results from using feed-forward
backpropagation neural networks.
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Abstract

This study presents a two-patch model of a tuberculosis (TB) epidemic, where individuals can freely
move between the regions, but only the susceptible population is able to do so. We determine the
conditions under which a backward bifurcation can occur, leading to the existence of multiple boundary
equilibria. Additionally, we show that a TB model with incomplete treatment, where treated individuals
can return to either the latent or infectious compartments, can exhibit exogenous reinfection without
displaying a backward bifurcation. In this case, the disease-free equilibrium of the model is globally
asymptotically stable when the associated reproduction number is less than one. In the absence of
reinfection, the model can exhibit up to four distinct equilibria.

Keywords: TB, Backward bifurcation, Basic reproduction number, Stability analysis.
Mathematics Subject Classification [2010]:  92D30, 37N25

1 Introduction

TB is a serious infectious disease caused by a bacteria known as Mycobacterium TB, which primarily affects
the lungs. In TB models, the treated individuals have the potential to leave the treatment compartment and
subsequently enter either the latent or infectious compartment, due to the persistence of Mycobacterium
TB or treatment failure, respectively.

Many TB models that account for the phenomenon of exogenous reinfection have been observed to
exhibit a specific type of bifurcation known as a backward bifurcation, where a stable endemic equilibrium
coexists with a stable disease-free equilibrium [1].

This study considers a model where only the susceptible individuals are able to migrate between the two
regions. We determine the conditions under which a backward bifurcation can occur, leading to the existence
of multiple boundary equilibria. Furthermore, we show that a TB model with incomplete treatment, where
treated individuals can transition to the latent or infectious compartments, can exhibit exogenous reinfection
without displaying a backward bifurcation.

2 Model Description

We assume that only the susceptible population is able to migrate between the two patches. The total
population in patch ¢, where ¢ = 1, 2, is divided into four compartments: Susceptible individuals, S;; Latent
individuals, L;, who have been infected but are not infectious; Infectious individuals, I;, who have active
TB and can transmit the infection but are not undergoing treatment; and Treated individuals, T;. In this
model, the treated individuals can leave the treatment compartment and transition to either the latent
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compartment due to the persistence of Mycobacterium TB, or the infectious compartment due to treatment
failure. This leads to the following system of fractional differential equations:

% =A1 — B111S1 — p1S1 + q1252 — 2151,

% =p11S1+ (1 —k1)01Th + (1 —p1)61 11Ty — (€1 + pa) L,

% =e1 Ly + k101 Ty + p101 /1 LTy — (p1 + 1+ o),

% =yl — 01611711 — (61 + ag + p1) 17, (1)
% =Ny — fB2l2Sy — p2Ss + q2151 — 1252,

% =021252 + (1 — ko)daTs + (1 — p2)baBalaTs — (€2 + o) Lo,

% =€ Lo + ka262T5 + p2aB25aloTs — (y2 + w1 + p2)la,

% =yoly — 0282151 — (62 + wa + p2) T,

3 Model Properties and Characteristics

In this part of the study, we examine the fundamental properties and characteristics of the TB model under
consideration.

3.1 Analyzing the Disease Free Equilibrium (DFE)

Substituting L; = I} = Ty = Ly = Iy = T» = 0 into the system of equations (1) yields the following
simplified expressions:

Ay — 151+ 1252 — ¢2151 =0,
Ao — 11252 + q2151 — 1252 = 0,

or AS = A, where A = < Pt a2 > , S = (51,52)T and A = (A1, A2)T. Linear system AS = A,
—q21  H2t+ Q12

has a unique positive solution S° = (59, SS)T = A~'A, where the individual components are expressed as:

g0 _ q12A2 + (p2 + q12) Ay Q0 _ g1+ (1 + Q21)A2. ©)
pipi + piqia + pegar’ 2 pape + piqie + page

Hence, As a consequence, system AS = A, has a unique DFE
Ey = (52,0,0,0,59,0,0,0). (3)
Through the analysis conducted thus far, we have been able to establish the following result:

Proposition 3.1. System (1) has the unique DFE, Ey = (59,0,0,0,0,59,0,0,0,0,0).

3.2 Biologically Feasible Region

Let us define the total population size N as the sum of the susceptible, latent, infectious, and treated
2 _ 2 _
individuals across the two patches, i.e., N = > (S; + L; + I; + T;), p = min{u1, p2}, A = >, Aj and N =
i=1 i=1
max{ Ny, %}, where Ny = N(0). We can establish the following important result regarding the biologically
feasible region for the TB model:
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Proposition 3.2. The feasible region Q2 is defined as:
Q= {(S1, L1, 11, T, S2, Lo, I, T») € RS : 5; < S), N < N}

is positively invariant and attracting with respect to the TB model described by the system of equations (1).

3.3 Epidemiological Threshold Quantity

0 | Fio 0 /Sy 0 Vi1 Vio
Define F' = [ } ,where Flo= | 0 0 (25 | and V = { ] , where
0 0 0
i U1+ €1 0 *(1*]{1)51 0 0 0
Vii = 0 Ho + €9 0 , Vis = —(1 — k2)52 0 01,
0 0 11+ 01 + ao 0 -y 0
0 0 0 o + d2 + wo 0 —Y9
Vor=| —e1 0 —kid1 |, Va2 = 0 H1t+7 o 0
0 —e 0 —k2d2 0 p2 + 72 +wi

The first matrix, denoted as F', represents the rate at which new infections are generated in each patch.
The second matrix, denoted as V', represents the transfer rates of infected individuals among the different
patches. The next generation matrix of system (1) is

ot [0 | P ][ Vi | Vi oo | Fel[X | Y
o] o0 Vor | Vao | L0 ] O zZ | W
[ Pz | FuW
Lo | o0 |

To determine the basic reproduction number, Rg, for the TB model described by the system of equations
(1), we can employ the well-established method proposed by van den Driessche and Watmough [3]. we have:

Ro =p{FV '} = p{F12Z} = p{F12Vag Va1 (ViaVas Va1 — Va1) 7'}

| 0 R 0 |}=mas{R) RE},
0 0 O
where
Rl — Bre159bs
0 b1bobs — 5171[b1k1 + 61(1 — kl)]7

()

BagaSYas

Rj =
arasas — day2larks + e2(1 — k2)]’

by =p1+e1, bp=p1+7+ax, bg=p1+ 01 +ag, a1 = pg +e2, az = p2 +y2 +wi, ag = pz + o2 +wo.
R} and R are the basic reproduction numbers in patches 1 and 2 in isolation, respectively, when there is
no travel between patches.

4 Backward Bifurcation Analysis

In the analysis of the TB model described by the system of equations (1), we investigate the phenomenon
of backward bifurcation, which can lead to the coexistence of a stable disease-free equilibrium and a sta-
ble endemic equilibrium, even when the basic reproduction number, Ry, is less than 1. This unexpected
behavior, where the disease can persist in the population despite Ry < 1, is an important consideration
in understanding the long-term dynamics and potential control strategies for the TB model. To study the
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backward bifurcation, we follow the approach outlined by Castillo-Chavez and Song [2]. We first make the
following change of variables to simplify the analysis:

x1 = L1, x9 = Lo, x3 = 11, x4 = I3, x5 =T, w6 =13, x7 = S1, 23 = So.

By setting X = (21,22, 3,74, ¥5, T, 7,73). ,the model (1) can be re-written in the form {D¢X = F(X),
with F' = (f1, f2, f3, f1, f5, fe, f7, fs)T. The Jacobian matrix evaluated at the DFE, Ey, is given by J? =

F-V 0 o000 -5SY o0
[ D —A]’WhereD_[o 000 0 —B59
B1e159b3

1 2 _ 1 _
If Ry > Rg, then Ro = Ry = g =50 e (h

tion parameter. The condition Rg = 1 is satisfied when the bifurcation parameter takes the value: 5] =
b1babz—d171[bikite1(1—k1)]
Els?bg

value, and the corresponding right and left eigenvectors are denoted as W = (w1, wa, w3, wy, ws, we, Wy, ws
and V = (v1, v2,v3, v4, s, V6, v7,v8) " , respectively, where

I We choose the transmission rate 5, as the bifurca-

At the bifurcation point 81 = 7, the Jacobian matrix J° has a simple zero eigen-
)T

bob k16 b +
wq ::424§7_>4}417 w2 ::07 w3 ::17 uu—zzoa Ws ::AEU We 2307UW = - (MQ q12) 1 ?U%7
V1€l €1 7 Hip2 + p1q12 + H2g21
01|b1k e1(l1—k b
ws 921 wr,v1 =1, v =0, v3 = 1lbiks + enl 1)],714:0,05:*1,7)6:117:2}8:0

C p2 i e1b3 €1
The associated backward bifurcation coefficients denoted by a and b, as defned in Theorem 4.1 of [2], are
given by

8 2

0" f .
a = Z Ukwiwjm(an B1 )
k,ij=1 v
=2v1wswr 1" 4 2v1wsws (1 — p1)61 61" + 2vzwswz(—0161") + 2vswswap101 51 (6)

=2ws 1" [wr + ((1 — p1) — vs + vsp1) 01]
sy [W N (b3[51(1 —p1) +bipa] — dufer (1 — k1) + blkl]) 91] :

€1b3

° % fy, b3
b= i————(FE *) = SO — 2269 5 0. 7
k%’:lvkw 8332661( 0,01") = viws Sy ol > (7)

Set R} = %. It can be checked that w; < 0, and for R} > 1 the term between the larger

parentheses is positive. Due to Theorem 4.1 of [2], if both the bifurcation coefficients a; and b; are positive,
then the system (1) exhibits backward bifurcation. Thus, we have proved the following theorem.

Theorem 4.1. Suppose that R} > R3 and R} = % > 1.
If

- (k2 + qu2)e1bs?Br* S0
Y1(pipz + prqiz + pager) (03[(1 — pr)er + bip1] — d1[er(1 — k1) + bika])’
then the system (1) undergoes a backward bifurcation at Rg = 1.

01

Similarly, if R3 > R}, the backward bifurcation coefficients are given by

/ / 1-— -9 1-£Fk k
o =2w, Ba* [w7 n <a3[52( p2) + a1pa] — d2fea( 2) + a1 2]) 02] 7 (8)
E9a3
b="259 >0, 9)
Y2
where
U}/5 = %7 w; = — ([Ll * q21) 25311/5
Y2 Mip2 + p1qi2 + p2ge1

Similar to Theorem 4.1, we can prove the following result.
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* 1—p2)+
’}J‘cheorem 4.2. Suppose that R3 > R} and RS = % > 1.

(11 + g21)e2a3% 52" SY
Yo(pi 2 + p1qiz2 + p2gor) (as[(1 — p2)es + a1pa] — dalea(l — ko) + arks])’

then the system (1) undergoes a backward bifurcation at Ry = 1.

92>

Therefore, only reducing Ry to less than one can not eradicate the disease from the population.

It is observed from (6)-(9) that for R} < 1 and R; < 1 the bifurcation coefficient a is negative and b is
positive. Thus, it follows from item (iv) of Theorem 4.1 of [2] that the system (1) will not undergo backward
bifurcation. Thus, the following result is established.

Theorem 4.3. (i) If R} > R2 and R} < 1, then the system (1) does not exhibit backward bifurcation.
(i) If R} < R% and R} < 1, then the system (1) does not exhibit backward bifurcation.

Theorem 4.3 establishes that the system (1) will not exhibit the phenomenon of backward bifurcation,
provided that the patch-specific reproduction numbers, denoted as R(l) and R%, are both less than unity. It
is important to note that the parameters R}, where 7 € 1,2, depend on several other model parameters,
namely &;, k;, and p;. In other words, the TB model that captures the dynamics of exogenous reinfection,
along with the relapse of the disease, will not display the coexistence of a stable disease-free equilibrium and
a stable endemic equilibrium, under the specified conditions. This is an important finding, as the occurrence
of backward bifurcation can complicate the disease control and eradication efforts. The lack of backward
bifurcation in this TB modeling framework suggests that the disease dynamics may be more amenable to
interventions aimed at reducing the reproduction numbers below the critical threshold of unity, leading to
the elimination of the disease in the long run.

5 Conclusion

In this study, we have developed a two-patch mathematical model to capture the dynamics of a TB epidemic,
where the key feature is the incorporation of exogenous reinfection among the treated individuals. The model
assumes that only the susceptible population can freely migrate between the two distinct geographical regions
or patches. In this work, we have derived the necessary conditions that lead to the occurrence of backward
bifurcation in the proposed two-patch TB model. These conditions involve the model parameters and
the patch-specific reproduction numbers, which ultimately determine the stability and multiplicity of the
equilibrium states. Identifying the conditions for backward bifurcation is crucial, as it reveals the potential
for the persistent presence of the disease even when the epidemiological threshold appears to be met at the
population level.
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Abstract

We present a real data, computationally low-cost feedback control to regulate a perturbed biological
system which has a cyclic invariant object. We provide an overview of the limit cycle detection in the
thyroid real hormone data (T3,74), and design a data feedback mechanism using TSH. We apply real
TSH data feedback to compensate thyroid deficiency due to lack of adequate production of T3 and T, and
reinstate its normal functionality on a limit cycle. Although in this work we focus on thyroid control, the
proposed method could be used for other perturbed biological systems that have a cyclic invariant object.

Keywords: Real Data Feedback, Control, Cybernetics, Dynamical Systems, Biological Systems.
AMS Mathematical Subject Classification [2010]: 37N25, 92B05.

1 Introduction

Thyroid as a complex system, serves a major rule in the proper development and functionality of a wide
range of species. Thyroid produces Triiodothyronine (73) and Tetraiodothyronine (74, known as Thyroxin),
which are vital for cell differentiation at early stages of life formation, various growth stages, and metabolism.
Thyroid is regulated by the Thyroid Stimulating Hormone (TSH) via a feedback system in the HPT-axis
as shown in Figure 1. The performance of thyroid greatly affects the behavior of every organ in the human
body. Various illnesses such as sepsis, could perturb the biological behavior of thyroid. When a biological
system suffers perturbation due to an environmental or internal source, it takes a considerable time to recover
and return to its normal behavior. A healing regulator is needed to keep the operation of the biological
system around its normal behavior until the source of perturbation vanishes.

In this paper, we focus on designing an auxiliary data feedback control system to regulate a perturbed
thyroid from its normal operation. We assume that the source of perturbation that deviates thyroid from its
normal operation persists and there is no direct clinical intervention to cure the perturbation source at time
scale that we run the control system. To reach this goal we first illustrate the invariant cyclic behavior in
thyroid that is revealed by studying a 23-dimensional system of dynamical equations in [1]. The geometry of

this limit cycle is studied by [2] and [3]. The high-dimensional thyroid model that is derived using reaction
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Figure 1: The HPT-axis axis with its internal feedback control.

kinetics and the bio-synthetic processes that reveal the normal limit cyclic behavior of thyroid, is presented
below, [1]:

T =eX(z,y,a,a) + elip, (1)
y=eY(x,y,,a), (2)
& = eA(z,y,a,a), (3)
U = evi(xg) + eva(x7) — €du. (4)

Here, the vector fields X, Y, A, and the input I represent the time evolution of seven main chemicals,
ten intermediate chemicals, and five main thyroid enzymes, respectively. € and § represent the time scales,
while v; and wve are Hill function type decreasing functions representing the negative feedbacks used in
the controller u. According to the standard lab examination of thyroid, we consider a three dimensional
subsystem (zg, z7,u), derived from Equations (1)-(4) which represents the three major chemicals T3, T, and
TSH. The projection of a typical solution in the two-dimensional (xg,x7), or (T3, Ty)-plane, is illustrated in
Figure 2(a). The real scattered data of clinical measurements are shown in Figure 2(b). For details about
the data specification, see [4, 5]. The elliptical limit cycle I', that represents the overall normal thyroid
behavior of this data set is presented in [2] and is shown in Figure 2(c). The location of the ellipse center,
its major and minor axis in this figure are also provided in [2]. In this figure the horizontal axis is z¢ which

represents the concentration of T3 in blood and the vertical axis x7, shows the Ty concentration in blood.
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(a) The simulated Limit Cycle. (b) The real scatered data. (¢) The normal limit cycle.

Figure 2: The geometric properties of the thyroid normal limit cycle from simulation and real data.

Having the target limit cycle I, in the next section we design a low cost data feedback system that could

compensate the malfunctioning of thyroid due to a systemic perturbation.
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2 Data feedback control strategy

In this work we focus on a data feedback control scheme that intervenes with the TSH degradation rate. As
mentioned in the previous section, we assume the malfunctioning source of thyroid persists and there is no
direct clinical intervention for its cure while the external data feedback is applied. In terms of the dynamical
model in Equations (1)-(4), we focus on the external feedback control by intervention into the rate of TSH
degradation, d. §(t) could in fact be used as a gate for continuous-time control, piece-wise constant control,
or hybrid discrete time control. In this context, §(t) = A(s,do(t)) where s € [0, 1] is the rate change and
do is the initial rate value. In this setting, we are required to run the full model at each feedback iteration,
which is computationally intense. To overcome this complexity we propose a data feedback strategy that
uses real TSH data that replaces the model output. In this view, we use the actual thyroid machinery as a
real simulator to get the TSH output values. The dataset that we use in this work is the aggregated data
of many people which provides us with a rich data source in the context of poly-body or multi-body. We
consider the 3—dimensional data (75,74, T'SH) in [5] and denote this as an N x 3 table 7, where N is the
total number of available data points.

In our data feedback design we choose an arbitrary pair (73,7y) from the table 7 and assign a time
label 79. We denote the associated point on the normal limit cycle I' as presented in the previous section,
as I'z,. Note that one full cycle of the limit cycle I' is associated to a 24-hour period. The associated TSH
value to time 7 is read from table 7, T'SH,,. We define a feedback value as the distance between (13, T}4),
and its associated normal point on the limit cycle, I';,, that is: F = ||(T3,74)r, — I'r,||. The new value
of TSH is computed via its previous value multiplied by (1 + €F’), where € is a constant coefficient, that
is TSH; = (1 + eF)TSH,,. The new TSH value, TSH,, is used to find a new (73,Ty) entry in table T,
(T5,T4),. This process is repeated until the feedback value F' gets small and (T3, 7Ty), gets close enough to
the I';. Figure 3 shows a conceptual diagram for our external data feedback control. The results that we
obtained using this procedure are shown Figure 4. In Figure 4 (a), (73,74);’s are shown with stars and
the I';’s are shown with squares. Figure 4 (b) shows the time series associated to T'SH;, T3, and Ty,. We

observe that the (T3,74).’s that are shown with stars, successfully reach the limit cycle T.

T3, Ty

lin . . -
4" Thyroid Axis ]

Figure 3: A conceptual diagram for our external data feedback control.

T

In this design we have the following limitations: (1) At each step, the body can bear a bounded level

of intervention. (2) The number of steps are bounded to a plausible level that body can tolerate. (3)
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Convergence to the normal limit cycle is gradual. (4) The channel to intervene in TSH degradation is open.
This assumptions imply that the thyroid has no problem in using the prescribed TSH by applying it to its

internal system.
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Figure 4: The time series’ of T3, Ty, TSH, and the associated phase portrait.

3 Concluding Remarks

In this paper, we aim at designing a fast, non-invasive data feedback control strategy to provide a compen-
sation mechanism for a systematic cause of thyroid perturbation. We utilized the real clinical thyroid TSH
data to control the (73,T4) thyroid behavior to compensate for a general perturbation caused by various
conditions, such as sepsis. Our effective and low cost method, benefits from a rigorous geometric analysis
of thyroid model and data analysis tools. Our computational experiments show the promise of this data

driven method to control various thyroid’s hormonal perturbations.
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Abstract

In this paper, Global dynamic of generalized viral infection model will be presented. By the values of
five threshold number and conditions on the parameters of model, the global stability of equilibria will be
given by using Lyapunov’s second method and LaSalle’s invariance principle. Also, Numerical simulation
of model will be presented in the last section.
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1 Introduction

In past decades, research in mathematical biology has been increased. In [1, 2, 3, 4], some viral infection
model have been studied. In this work, we consider the following system

&=X—dr—vf(r,v) —yg(z,y) + py,

$=(1—m)f(z,v) +yg(z,y)] — (e +0)s,

y=mlvf(z,v) +yg(z,y)] +ds — (a + p)y — pyz, (1)
v = ky — uv — quw,

w = gvw — hw,

z=cyz — bz.

where x(t), s(t), y(t), v(t), w(t) and z(t) show the density of susceptible cells, the number of latently infected
cells, actively infected cells, the virus, Cytotoxic T cells and B lymphocyte cells, respectively. The fractions
(1 —m) and m with 0 < m < 1 are the probabilities that upon infection, an uninfected cell will become
either latently infected or actively infected. The functions f(z,v) and g(x,y) describing the virus to cell
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and the cell to cell transmission, respectively. Furthermore, the function f(x,v) and g(z,y) are assumed to
satisfy the following properties:

(A1) f(0,v)=0, for all v>0 and ¢g(0,y) =0, for all y>0,

A, gzp,v >0 and @:L',y >0, for all x>0, y>0 and v >0,
oz oz
of g
3) 4§ \4y = a 4Ly = U, - Y el = U.
(As) 8v(at:v)<0 and 8y(xy)<0 for all >0, y>0 and v>0

This paper is organized as follows. In Section 2, some basic properties of solutions such as positivity and
boundedness wii be given. In Section 3, the definition of five threshold number and the form of equilibrium
points of system 1 will be presented. The global stability of the rest points will be considered in Section 3.
Finally the numerical simulation of system 1 will be shown in Section 4.

2 Basic Results

System (1) represent the interaction between the cells in the body. Hence, the number of these cells must
be bounded and positive. By the same arguments in [1], the following proposition can be proven.

Proposition 2.1. All solutions of system (1) with non-negative initial conditions exist for all t > 0 and
remain bounded and non-negative.

3 Global Stability

In this section, the global stability analysis of model (1) will be shown. System (1) has five rest points in
the following form:
1) Infection-free equilibrium Eg = (¢, 0,0,0,0,0),
2) Immune-free equilibrium E; = (21, $1,¥1,v1,0,0),
3) humoral immune-free equilibrium Eg = (22, s2, Y2, v2, 0, 22),
4) CTL immune-free equilibrium Eg = (z3, s3, y3, v3, w3, 0),
5) chronic equilibrium E4 = (24, S4, Y4, V4, Wq, 24).
As in [2, 3], the basic reproduction number (Rg) of system (1) is as follows:
k(em+0)f(xo,0) (em+ §)g(xo,0)

Ro = @t petdu | (atp)leto) 2)

In addition to Rg, we need the another immune response reproduction rates. As in [1], these threshold
numbers have the following form:

c
RerL = %,
RHom — ghﬂa
cy3 (3)
RcrLe = 5
v
1%Hom(l‘ - LhQ

In the following, theorems about the global stability of equilibria will be presented.
Theorem 3.1. If Rg < 1, then Infection-free equilibrium Eq is globally asymptotically stable.

Theorem 3.2. If Rg > 1, Rorr, <1, Rpgom < 1 and dx1 — py1 > 0, then Immune-free equilibrium Eq is
globally asymptotically stable.

Theorem 3.3. If Rerr, > 1, Ruome < 1, Rorne > 1 and dzs — pys > 0, then humoral immune-free
equilibrium Eqg s globally asymptotically stable.
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Figure 1: Global Stability of infection-free equilibrium Eg with 5; = 0.0002, 85 = 0.0003, ¢ = 0.04 and
¢ =10.03 (Ro = 0.9945)
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Figure 2: Global Stability of immune-free equilibrium E4 with 5; = 0.002, 82 = 0.003, g = 0.04 and ¢ = 0.03
(Ro = 9.9451, Rcrr, = 0.3714 and Rygom = 0.6232)

Theorem 3.4. If Rgom > 1, Rorre < 1, RuomcRoerre > 1 and dxs — pys > 0, then CTL Immune-free
equilibrium Eg is globally asymptotically stable.

Theorem 3.5. If Ruomc > 1, Rerne > 1 and dxy — pys > 0, then chronic equilibrium By is globally
asymptotically stable.

4 Numerical Simulation

In this section, to illustrate the theoretical results, applying MATLAB with ODE45 method, some numerical
prx Pox

1+ 1+ my
saturated mass action functional response. For simulation, we consider a set of parameters

simulation of system 1 will be presented. We put f(z,v) =

and g(z,y) = , which are
v

A =10, d=0.01, 5 = 0.00005, 15 = 0.00005, p = 0.01, m = 0.5, e = 0.1,
p=001,0=02 a=08, p=0.9, k=10, u=3, ¢=0.01, h=2, b=0.755

and different values of f1, 2, g and ¢ (See Figures 1-5).
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Figure 3: Global Stability of homoral immune-free equilibrium Eo with 81 = 0.002, 52 = 0.003, g = 0.04
and ¢ = 0.2 (RO = 9.9451, RCTL = 2.4763, RCTLC = 2.1746 and RHomC = 03356)
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Figure 4: Global Stability of CTL immune-free equilibrium Eg with §; = 0.002, S2 = 0.003, ¢ = 0.3 and
¢ =0.08 (Ro =9.9451, Rpgom = 4.6745, Rygomc = 1.8875 and Rorrc = 0.8698)
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Figure 5: Global Stability of chronic equilibrium E4 with 8; = 0.002, g2 = 0.003, ¢ = 0.3 and ¢ = 0.2
(Ro = 9.9451, Rygomc = 1.8875 and Rorrc = 2.1746)
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Abstract

The right classification of BRCA1 variants is the key to pre-symptomatic detection of breast and
ovarian cancers to conduct preventive actions. Since BRCA1 has a high incidence and penetrance in these
kinds of cancer, a high-performance predictive tool can be employed to classify the clinical significance
of its variants. Several tools have previously been developed for this purpose which poorly classify the
significance in specific cases. In this study, an ensemble classifier is proposed as a predictive model with
high specificity and sensitivity in variants classification.

Keywords: BRCA1, Breast cancer, VUS, Predictive model, Machine learningArticle
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Breast cancer has become one of the most prevalent malignancies among women worldwide. The increasing
rate of mortality and morbidity caused by breast cancer has led researchers to explore novel preventive and
therapeutic ways against malignancy. Breast cancer incidence is majorly sporadic. However, individuals at
early ages are more likely to be associated with an increased familial risk of breast cancer. This hereditary
predisposition includes approximately 5-10% of the patients [1]. The germline mutations in the BRCA1
and BRCA2 genes are the origin of nearly 50% of hereditary breast cancers [2]. The BRCA1 gene with
an autosomal dominant inheritance pattern in 17q21 involves DNA repair, genomic stability, transcription
regulation, RNA processing, and cell cycle checkpoints (S and G2). This gene acts as a tumor suppressor,
and its mutations mostly lead to loss of function [3, 4, 5]. BRCA1 (NM_007294.4) has 24 exons, of which
22 of them are coding exons and translates to 1863 amino acids [6]. Ring finger domain and BRCT repeats
are remarked as BRCA1 domains and also are considered more to be pathogenic [7]. The protein of this
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gene, with its ligase properties, facilitates the calling of molecules involved in the DNA repairment and also
plays its role by binding to small molecules or proteins such as BARD1 small molecules or PALB2 protein
[8, 9, 10]. Indeed BRCA1 due to its significant prevalence and incidence is one of the most well-known genes
in hereditary breast and ovarian cancers, which are somewhat screenable and treatable [3]. The emergence
of next-generation sequencing (NGS) technology has made a revolution in the early detection of BRCA1
mutations. The variants obtained from NGS can be classified based on the guidelines provided by the
American College of Medical Genetics and Genomics (ACMG) [11]. One of the most problematic decisions
in reporting NGS data interpretation is concluding about variants of unknown significance (VUS) [12].

Recent advances in developing computational tools for analyzing biological data have increased the im-
pact of bioinformatics in ACMG guidelines. These computational methods can be a step towards improving
the classification of the variants [13]. For instance, Sorting Intolerant from Tolerant (SIFT) [14], Polymor-
phism Phenotyping v2 (PolyPhen2) [15], Deep Neural Network (DNN), [16] and Combined Annotation-
Dependent Depletion (CADD) [17] are four well-known in silico predictors in NGS annotation analysis,
which have special thresholds to distinguish pathogenic variants from benign variants. Unfortunately, the
available in silico tools can confidently identify a very small number of disease-related variants [18]. Recently,
several methods have been developed with a high degree of confidence based on machine learning approaches
to build predictive models using post-mutation differences [19, 20]. The proposed method investigate the
effects of benign and pathogenic missense variants on the protein structure based on the changes in its
physiochemical properties.

2 Method

The missense variants of BRCA1 were downloaded from the ClinVar database [18]. Among these variants, the
variants with the clinical significance of the benign and pathogenic were selected. The clinical significance of
the selected variants was further checked using the ACMG guidelines provided by the VarSome web server
[19]. Next, the list of variants was enriched by adding physicochemical properties of amino acids in the
protein.

To classify the variants of the BRCA1 gene, the Random Forest (RF) ensemble classifier was used.
The most important parameters of the designed RF in this study are represented in Table 1, while other
parameters were set to their default values. The parameters in Table 1 were fine-tuned using grid search
as a search strategy and the optimal values were determined. Each possible setting of parameters was
evaluated using the Area Under the Curve (AUC) of the Receiver Operating Curve (ROC) score resulting
from ten-fold cross-validation. Before fine-tuning the model, the dataset was split into training (80%) and
test sets (20%). The training set was used in fine-tuning RF and the test set was utilized to evaluate the
best model resulting from the grid search. Data split and fine-tuning of the model were performed using
the scikit-learn library.

Table 1: Selected parameters of RF and their optimal values results from grid search.

Parameter Optimal value
Bagging fraction 0.7
Feature fraction 0.8
Learning rate 0.01

Max depth -1

Min data in the leaf 10
Number of estimators 150
Number of leaves 4
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3 Experimental Results

In this section, we first determine the optimal threshold for the proposed model. Subsequently, we evaluate
the model’s performance using this optimal threshold. Next, we compare the proposed model with other
state-of-the-art tools from the literature. The performance of the proposed model was investigated using
three evaluation metrics including Recall, Precision, and AUC-ROC. To evaluate the Recall and Precision
scores of the model, it is necessary to obtain the predicted class labels of each pattern. To convert the
probabilities of the proposed model to the class labels, the optimal threshold of the model was estimated
using the test set. There are several techniques to find the optimal threshold of a probabilistic model. In
this work, the optimal threshold was calculated using the index of Younden [20] which is defined as:

J=TPR—-FPR

where TPR and FPR are True Positive Rate and False Positive Rate, respectively. Table 2 illustrates
results obtained for above mentioned metrics. Finally, the performance of the proposed method and each of
state-of-the-art tools is summarized in Table 3. Besides, the AUC-ROC and AUC-PR curves were plotted
to specify the performance of the tools at different threshold settings, as shown in figures 1 and 2.

Table 2: The performance of the proposed model using the single train-test split

Single Train-Test | Optimal threshold | Recall | Precision | AUC-ROC
Training data 0.344 0.977 0.924 0.953
Testing data 1.0 0.916 0.960
1.0
0.8 A
0.6
c
e
5]
©
2 0.4 1
- Proposed (AUC = 0.945)
0.2 1 — SIFT (AUC = 0.258)
=== Polyphen2 (AUC = 0.556)
— CADD (AUC = 0.923)
0.0 - = DANN (AUC = 0.677)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 1: The AUC-PR curve of the proposed model and other tools
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Figure 2: The AUC-ROC curve of the proposed model and other tools

Table 3: Comparing the proposed model with other tools

Tool Threshold | Recall | FPR | Precision | AUC-ROC
SIFT 0.05 0.991 | 0.548 0.661 0.104
CADD 15 1.0 0.508 0.636 0.728
DANN 0.96 0.945 | 0.564 0.598 0.770
Proposed 0.604 0.918 | 0.066 0.935 0.966

4 Conclusion

The main purpose of this study was to develop an accurate predictive model for classifying BRCA1 missense
variants. The proposed model works based on random forest approach as a powerful machine learning tool
for evaluating the missense mutations effect based on a set of physicochemical properties. The model can

be used to evaluate variants before conducting further functional studies in the laboratory.
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Abstract

Diagnosing a disease based on gene expression data extracted from microarrays is still an open field
of research. Due to the availability of whole-genome data through microarrays technology, diagnosis
accuracy is expected to be improved. Despite the high potential of the data prepared by the technology,
their analysis on different platforms shows that they may differ for different samples concerning biomarker
status. This affects the diagnosis accuracy because of the existing bias between two different experimental
conditions. To address this problem, we propose a new approach using statistical analysis of biological
data combined with artificial intelligence techniques.

Keywords: Alzheimer’s disease, disease diagnosis, gene expression, machine learning
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

A disruption in thinking, remembering, and behaving in doing daily work is called Dementia. Alzheimer’s
disease (AD) is the most prevalent kind of Dementia that begins silently with mild cognitive impairment
(MCI) and progresses gradually. AD is a chronic neurodegenerative brain disorder in which neurons decline
irremediably [1]. The pathogenesis of AD has not been identified as its reliable biomarkers are unknown. No
effective and reliable therapy exists for AD and the existing medicines can only relieve or slow its progression
[2, 3]. The previous facts reveal the importance and necessity for the early detection of AD [4, 5, 6]. With
the advances in technology, recent works use computer-aided diagnosis (CAD) tools to predict AD through
artificial intelligence (AI) approaches. Researchers take advantage of Al to diagnose AD from different
perspectives. Generally, from the biological point of view, Al is used with phenotypic or genotypic data
[7, 8]. A common example of the phenotypic approach is diagnosing AD using brain images. For instance,
Sarraf and Tofighi [9] used functional Magnetic Resonance Imaging (fMRI) data with LeNet as the state-
of-the-art Convolutional Neural Network (CNN) to diagnose AD. Ramazan et al. [10] employed ResNet-18
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along with transfer learning to diagnose different stages of AD using fMRI data. Farooq et al. [11] employed
GoogLeNet, ResNet-18, and ResNet-152 and used data augmentation on MRI images. These models were
trained from scratch to predict different cases of AD, including mild cognitive impairment (MCI), late mild
cognitive impairment (LMCI), and normal. Wang et al. [12] introduced an eight-layer CNN to diagnose
AD and normal cases using MRI data. The methods based on this approach are accompanied by low-
accurate outcomes which cause late remedies against AD. Such deficiencies motivate researchers to employ
a genotypic approach for the treatment of the disease [13]. Various studies have been conducted to diagnose
AD using genotypic data such as gene expression (GE) profile data. The key step in diagnosing diseases
using GE data is to find differentially expressed genes (DEGs). The GE datasets are generally vast, and
thus, researchers have been motivated to employ machine learning (ML) techniques along with statistical
methods to analyze GE data and find DEGs. In this regard, Sahu et al. [14] proposed a framework to
identify highly specific genes to AD based on a statistical analysis of gene ontology and ML. Liu et al. [15]
used graph Laplacian regularization to include protein-protein interaction network information as well as
GE data for diagnosing AD. In another study, Sharma and Dey [16] proposed an ensemble feature selection
method to identify potential biomarkers related to AD. El-Gawady et al. [17] introduced a four-staged ML-
based framework for AD diagnosis. The main stage of the framework deals with gene selection where they
used filter-based metrics to score the importance of each gene in AD diagnosis, and then, they incrementally
assessed the rest of genes using ML techniques. Park et al. [18] combined GE data with DNA methylation
data for AD diagnosis. After feature selection, they used a Deep Neural Network to predict AD based
on the integrated data. The incidence of AD, similar to other complex diseases, involves the interaction
between multiple genes. Univariate analysis of associations enables us to identify risk genes at the expense
of ignoring biomarkers with weak associations. Accordingly, scientists paid more attention to the role of
biological networks such as protein interaction network (PIN) and gene interaction network (GIN) besides
GE data in the occurrence and development of a disease. In this regard, several works have been conducted
to identify disease-related genetic networks [19, 20]. These studies have opened a new way for investigating
the pathogenic origin of diseases. In this paper, our focus is to introduce a novel approach for diagnosing AD
by integrating GE and GIN data. The effectiveness of the proposed framework was illustrated via several
experimental studies.

2 Method

The Gene Expression Omnibus (GEO) web server was used to download the GE profile dataset, with
accession number GSE5281 [21]. The dataset contains 54,675 gene expressions of 161 samples including 87
AD and 74 normal aged brain cases. The expressions have been measured from six different regions of the
brain including the entorhinal cortex (EC), the hippocampus (HIP), the medial temporal gyrus (MTG), the
posterior cingulate (PC), the superior frontal gyrus (SFG), and the primary visual cortex (VCX). The GE
dataset faces the problem of skewed distribution. In this regard, all data within the dataset was transformed
using the log2 function. Next, All the available genes in the platform of the GE dataset were extracted and
submitted to the STRING online server to obtain the corresponding GIN.

After data preparation, the B-statistics and a new score based on a gene interaction network are used
to evaluate genes. The B-statistics helps us to find differentially expressed genes. The new score, called
the evidence score, measures the compliance level of the differentially expressed genes with past biological
evidence. The evidence score for each gene is defined via the formula:

NpEas
ES(9) =

where Nppgs indicates the number of neighbors of the gene g; in the co-expression network which is in
the DEGs list and Nyy; is the total number of g;’s neighbors in the network.
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3 Experimental Results

The performance of the proposed approach for identifying the potential candidate genes for AD was assessed
based on the classification performance of different classifiers. Along with the proposed method, three
different gene selection methods were used including PCA, ANOVA, and MI. The results are summarized
in Table 1.

Table 1: The accuracy (A), precision (P), recall (R), and Fl-score (F) obtained by different classifiers using
four different gene selection methods besides the proposed method

Metric | KNN | SVM | RF | MLP | NB | LDA

PCA A 88.19 | 90.68 | 86.33 | 93.78 | 81.36 | 91.3
P 91.04 | 96.82 | 91.93 | 94.44 | 97.82 | 92.85

R 82.43 | 82.43 | 77.02 | 91.89 | 60.81 | 87.83

F 86.52 | 89.05 | 83.82 | 93.15 | 75 | 90.27

ANOVA A 83.85 | 85.71 | 82.6 | 82.6 | 86.33 | 85.09
P 84.28 | 86.95 | 82.85 | 83.82 | 88.23 | 86.76

R 79.72 | 81.08 | 78.37 | 77.02 | 81.08 | 79.72

F 81.94 | 83.91 | 80.55 | 80.28 | 84.5 | 83.09

MI A 88.19 | 89.44 | 85.71 | 90.68 | 86.33 | 87.57

P 93.65 | 92.53 | 84.93 | 91.54 | 87.14 | 90.90

R 79.72 | 83.78 | 83.78 | 87.83 | 82.43 | 81.08

F 86.13 | 87.94 | 84.35 | 89.65 | 84.72 | 85.71

Proposed A 96.89 | 93.16 | 91.3 | 95.03 | 90.06 | 90.68
P 98.59 | 94.36 | 92.85 | 95.4 | 90.27 | 92.75

R 94.59 | 90.54 | 87.83 | 95.4 | 87.83 | 86.48

F 96.55 | 92.41 | 90.27 | 95.4 | 89.04 | 89.51

4 Conclusion

For diagnosing AD, we aimed to take advantage of all the available tools and information from bioinformatics
and artificial intelligence. As a result, we introduced the new approach. A focal point of this approach is
the third step, in which we define the evidence score based on the GIN. Through this score, we complement
past experiences with the results of statistical analysis from the previous step to further filter out genes.
The performance of the propsed method was approximately the same or better than the state-of-the-art
feature selection methods.
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Abstract
In this paper, a model for the transmission of Covid-19 is analyzed using Caputo derivative. A
numerical method for the model is obtained by applying the fractional Euler method. To forecast the
spread of Covid-19 in the world, a numerical simulation based on real data is presented. These simulations
focus on investigating the impact of different fractional orders on the transmission dynamics.
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1 Introduction

The first instances of the novel coronavirus (nCoV) were discovered in China in December 2019. The virus
rapidly spread to various countries worldwide, leading to a significant amount of deaths. The largest peak
of Covid-19 in the world happened in January 2022, here we are going to simulate it. We consider active
infected cases reported worldwide in the period of time 7", from December 3, 2021 to February 11, 2022. New

mathematical models of fractional order have been developed to help predict and control disease outbreaks

(1, 2, 3]).

2 Preliminary Definitions

Here, we start by introducing the fundamental definitions of fractional calculus that are relevant to the

present manuscript.

Definition 2.1. ([4]) For a function M, the Caputo fractional derivative of order a € (0,1) is given by

€y
CD?[M(t)]:P(El_a)/O (t_’\z)(ﬁﬂ) ., =la]+1.

Also, fractional integral of order a with o € R is defined as

CTM()] = — | /0 (t— 0P TM(C) d.

)

1Speaker

110



Behnam Mohammadaliee, Tohid Kasbi Gharahasanlou

3 Model Formulation

In this section, a model is developed where the population is divided into six distinct classes; namely:

Susceptible (S), Exposed (£), Asymptomatic infected (A), Symptomatic infected (Z), Critical infected (C)

and Recovered (R). The system is as

ECTIDR[S(H)] = T — A*(t) — haS(t),

2O IDRE()] = X () — (€ +Tia)E (),

21D A(L)] = pEE() — (p + Fia) A(t),

S 1D[Z(4)] = (1 — p)EE() — (m + 7 + v + ha) (1),

EIDRC(t)] = 7Z(t) — (0 + 5 + ha)C(1),

EIDAR(Y)] = pA(t) + TZ(t) + 0C(t) — haR (%),
where
GEWM) + QA + GZ(H) + GC()S(t)

r( = ¢ 7

for time t € [0, T] where the initial conditions are
S(0) >0, €&£(0)>0, A0)>0, Z(0)>0, C(0)>0, R(O)>0.
The positively invariant region of system (1) with the initial conditions is as

v
o = {(S,E,A,I,C,R) ERy 1 N< — }
d
The disease-free equilibrium point is

5 v
EY = (8%&°,4°,7° c° RY) = <ﬁ,0,0,0,0,0> .
d

Also, the endemic equilibrium point is acquired as E® = (S% €%, A® 7% C® R®), where

go_ WX
GE® + (A® + (3T® 4 (4C® + Nﬁd7
£o _ (GA® + (3T% + (4C®)S®
R(E+ha) —GS®
e pEEY
p+ha’
Lo (-pees
T+T+v+hg
0o A
oc+0+hg
RO _ pA® + 7I% + oC®
ha '

The basic reproduction number is as

% C1 Gpé G3(1 —p)¢ Gl —p)én
0

:€+ﬁd+(
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Theorem 3.1. The disease-free equilibrium point E° of (1) is locally asymptotically stable if Ry < 1.

Theorem 3.2. The disease-free equilibrium point EO of (1) is globally asymptotically stable if Ry < 1.

4 Numerical Method and Simulation

Consider system (1) in a compact form as follows:
210D = M(tw(t),  w(0) =wy 0<t<T < oo, (2)

where w = (S,&,A4,Z,C,R) € RS, wy = (So, &, Ao, Zo,Co, Ro) is the initial vector, and M(t) € R is a

continuous vector function satisfying Lipschitz condition
[IM(w1(t)) = M(w2 ()] < cllwi(t) —wa(B)[l, >0
Applying a fractional integral operator corresponding to the Caputo derivative to equation (2), we obtain
wt) = E5%w + ZM(w(t))], 0<t<T < oo.

Set k = % and t, = nk, where t € [0,7] and N is a natural number and n =0,1,2,..., N.
Let w¢ be the approximation of w(t) at t = t,. Using the fractional Euler method in [5], we get

—1_ k - ,
Wnt+1 = -:'1 a[w() + m Zun+1,iM({“L’awi)]v 1= 07 1727 7N - 17
1=0
where
Upr1i =M+ 1—0)% = (n—1)%, i=0,1,2,...,n.

In simulation of model (1), we utilize the numerical values provided in Table 1. The real data for active

Table 1: Details of the model parameters and their numerical value.

Parameter explanation Parameter Value Ref
Susceptible individuals S(0) 7910775988 Estimated
Exposed individuals £(0) 43367979 Estimated
Asymptomatic infected individuals A(0) 3613998 Estimated
Symptomatic infected individuals Z(0) 14455993 [6]
Critical infected individuals C(0) 2891198 Estimated
Recovered individuals R(0) 0 Hypothetical
Birth rate of population v 386038.78 Estimated
Natural death rate ha 2.10356 x 1072 Estimated
Transmission rate of infection from £ to S 1 4.78 x 1071 Fitted
Transmission rate of infection from A to S Ca 217 x 1071 Fitted
Transmission rate of infection from Z to S (s 3.41 x 107! Fitted
Transmission rate of infection from C to S Ca 1.69 x 107** Fitted
Rate at which exposed become infectious 13 0.5 Fitted
Isolation rate of symptomatic infected people s 0.34 Fitted
Recovery rate of A p 0.36 Fitted
Recovery rate of 7 T 0.34 Fitted
Recovery rate of C o 0.15 Fitted
Death rate due to disease in class 7 v 0.05 Fitted
Death rate due to disease in class C 6 0.1 Fitted
Population progress to A D 0.5 Hypothetical

infected cases, also the results of model (1) for a € {0.90,1} on periode T can be seen in Fig. 1. Clearly,
the model has very well support from the data and the advantage of using the derivative of the fractional
order instead of the derivative of the integer order can be seen. The changes of classes S,&,A,Z,C and R
with a € {0.70,0.80,0.90} frome December 3, 2021 to September 28, 2022 are shown in Fig. 2.
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Figure 2: Dynamics of S(t), £(t), A(t), Z(t),C(t) and R(t) with Caputo derivative whenever a € {0.70,0.80,0.90}.
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Abstract
In this article, a nonlinear model of integro-differential equations for the evolution of a heterogeneous
population of cancer stem cells (CSCs) and cancer cells (CCs) is presented. We will prove the existence of
the solution and uniqueness for the model using a suitable iterative scheme that converges to the solution.

Keywords: Cancer modelling, Integro-differential systems, Upper and lower solutions, Numerical inte-
gration.

1 Introduction

Recent studies have shown that cancer stem cells (CSCs), which are known as tumor-initiating cells, are the
primary mediators of resistance to chemotherapy, radiotherapy and are also responsible for tumor recurrence
after treatment [6]. A cancer stem cells (CSCs) has been defined as a small subpopulation of cells within
a tumor that possesses the capability to renew itself and give rise to heterogeneous cell lineages of cancer
cells that, in turn, comprise the tumor [5, 2].

2 Mathematical model

In 2009, Enderling proposed an individual-based cellular automaton model, in which individual cells are
described by elements of a square grid, to simulate the dynamics of CSC, CC and their competition for
developed an in silico environment. In the case, the mortality rate for CCs increases, for example due to
treatment, CCs finds open space to grow. They generate more CSCs through occasional symmetric divisions,
resulting in larger tumors.

Definition 2.1. The effect that increased CCs death can lead to a larger tumor is called the tumor growth
paradox.

They noted that their result required some movability of CSC stimulation, otherwise the tumor growth
paradox would not occur [1].

In 2013, Hillen rewrote Enderling’s cellular automata dynamics model as a system of integral partial
differential equations (iPDEs) for continuous CSCs and CCs population densities.
The simulation of the model based on the Enderling factor shows the paradox of tumor growth, which
increases with the increase of cell death in the CCs compartment of tumor growth. This paradox is defined
in the mathematical model as follows:

1Speaker
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Definition 2.2. Let p,(t) show the total tumor size at time ¢ > 0 and o > 0 represents the death rate of
non-cancer stem cells CCs. If the death rate oy < ag and there are times ¢1,t5 and T > 0 then the tumor
growth paradox model shows that

Paq (tl) = Pas (t2)7 Pay (tl + T) < Pas (t2 + T)v
for 0 < T < Tp.

Let u(x,t) and v(z,t) denote the density of cancer stem cells (CSCs) and non-cancer stem cells (CCs)
at time t and place x respectively. Also, the total density of the tumor can be represented by p(z,t) =
u(z,t) +v(x,t). In the following we assume that cells cannot be stacked on top of each other, so there is a
maximum density of one cell per unit cell area. This means p(z,t) < 1. Cells can reproduce only when there
is room for the cell to accommodate the daughter cell, otherwise reproduction is prevented. To model the
spatial search, they defined a nonlinear integral expression. According to the model based on the Enderling
factor, they assumed that all cells can migrate randomly. These assumptions led to the following system of
coupled equations that describe the dynamics of CSCs and CCs

(‘img/z,t) = D, Au(z,t) + (5’)//(2 k(x,y, p(x,t)u(y, t)dy,
811591; t) = DyAv(z,t) + (1 — 5)7/Q k(x,y,p(z, t)u(y, t)dy, (1)
40 [ bl plan ot Ody vl

Where, v and p represent the number of cell cycle times of cancer stem cells and non-cancer stem cells per
unit of time, respectively. Also, §(0 < ¢ < 1), the average ratio of symmetric division of cancer stem cells
and « > 0 shows the death rate of non-cancer stem cells and the diffusion coefficient for cancer stem cells and
non-cancer stem cells respectively with D, D, is shown. Also  is the spatial domain and k(x,y, p(z,t)) is
the probability density that a cell located at y produces a cell located at z [3].

Remark 2.3. Let k(x,y,p(z,t)) = k(z,y)F(p(z,t)) where

A) The domain of F(p) is in the interval [0, 1] and is a non-negative non-increasing continuous Lipschitz
function such that
1. F(0)=1, F(1)=0,
2. Vpe (0,1) F(p)>0,
3.Vp>1, F(p)=0

B) K>0, KeCQ,9Q), [4K(zy)dy<l.

2

3 Existence and uniqueness

Assume that initial values ug, v, are smooth, ug, vg € C%(Q) and at every point z € 2 boundary conditions
0 < wup(x),vo(x) <1, (2)
is established. First, we will start with uniform functions. Suppose
to(z,t) =0, vo(z,t) =1, do(z,t) =1, vo(z,t) =0,

then, up(z,t), 0p(x, t), Gp(x,t), 0p(x,t) for h =1,2,... are defined by the following iterative scheme

ot

éTfh = DuAﬂh + 5’7 /Q k(xa Y, ﬂh($a t) + f[}h—l($a t))ah(ya t)dya (3)
ov R

O = Do (1= )7 [ Ko pins.0)+ 0u(o, 0)n1 (v, Oy +

p [ Koy, inea(e, )+ anle )n(o. )y ~ vy (4)
Q
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and
Ot . . . .
5 = DuBin+0y A k(z,y, an(z,t) + Op—1(x, t))an(y, t)dy, (5)
o . . . .
= Dol (1= 0y [ bay. oo, + 0n(o, )1 (. )+
p [ kina(,t) + in. )00 (0. )y — ©
with boundry conditions
oy, _ ovy, P oy, . oy, .
%—%—0—%—87, Zn@QX[O,T]

and
ap(z,0) = uo(x) = up(x,0), vp(x,0) = vo(x) = Op(x,0),

in Q. keep in your mind that wug(x),vo(x) show the same initial values in the original model. Note that in
equation (3), the time evolution for the function uy(x,t) using the previous value of vj,_1(x,t) calculated
in the previous step is obtained. In this way, @ (z,t) remains the only unknown variable in this equation.
Similar to the process above, we will have (4),(5) and (6) for three equations. The benefit obtained in the
scheme is that the differential system consists of non-coupled equations whose analysis can be done with
classical and well-known arguments based on the existence of upper and lower solutions. For the iterative
schemes (3),(4),(5) and (6) we assume that the kernel k(z,v,-) for each p € [0,1] is C! and we define the
uniform functions

p(x,t) =0,¢(x,t) = 1.
According to the relation (2), on the whole domain 2, we can write
p(x,0) < uo(x), vo(z) < ¥(x,0).

In addition, ¢(z,t) and ¥ (x,t) satisfy the Neumann boundary conditions. In the proof process, we put
o(z,t) and ¥ (x,t) in the equations (3), (4),(5) and (6) respectively.

We notice that ¢(z,t) solves the previous equations (3) and (5); on the other hand, as what concerns (4),(6),
we have

DyAp(z,t) + (1 — 5)7/ k(x,y, tp—1(x,t) + @(x,t))Un-1(y, t)dy+

Q
Op(x,1)

p [ kaina(o.0) + ol 0oy — ol ) = ZE0 =

u—avﬁkwwwhuawmhu%mwzo
and
QA%%0+O—®vék@wﬂmﬂ%ﬂ+wnﬂmmﬂ%ﬂ@+

P[f@wﬁhﬂ%w+waww@ﬁ@—awaw_&é§ﬂ_

(1- 5)7/9k‘(:r,y,ﬁh_l(m,t))ah_l(y,t)dy > 0.

According to the above relations, it follows that ¢ (z,t) is a lower solution for each of the equations (3), (4),
(5) and (6). Moreover we notice that ¢ (x,t) solves the previous equations (3) and (5); on the other hand,
as what concerns (4) and (6), we have

Dy Ay, t) + (1 - 5)7/Q/<(w, Yy U1 (2, t) + (2, 1))t -1 (y, t)dy+

p/k@wﬁmﬂﬁﬂ+¢@J»M%®@—aM%®—
Q
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and

DUAUJ(»T’ t) + (1 - 6)7/Q k($a Y, ah—l(x7 t) + w(l‘a t))ah—l(ya t)dy+

p [ Koo t) + 606Gy — e ) o) - 200 az

According to the relations obtained above, it follows that ¥ (x, t) is an upper solution for each of the equations
(3),(4),(5) and (6) will be So it allows us to apply Stinger’s results to the given problem. It follows that
the equation (3) will have a strong solution ; with ¢ < @ < . Similar to the above argument, it can be
proved that the equations (4), (5) and (6) have strong solutions whose values are between ¢ and . Hence,
the following relation holds for h = 1,2, ...

0 < {Lh(x,t),ﬁh(x,t),f)h(x,t),@h(x,t) < 1, (7)
for any (z,t) € Q x [0, T].
Lemma 3.1. For each h = 1,2,..., the following statement is true on the entire domain:

,t) < ap(,t) <t (2,t), (8)
(90 t) < on(x,t) < O (2, 1), (9)
Theorem 3.2. Suppose ug, vy € C(Q), k(x,y,-) € CL([0,p]) and also the boundary conditions (2) is estab-

lished. Then the sequences {(un(z,t), 0p(x,t))}n , {(Gn(z,t), 0p(x,t))}n obtained using the previous scheme
, monotonically to a regular solution (u,v) of the problem (1) such that

’[Lh_l(l‘, t)
@h_l(:l}, t)

C> §<

< <u <u
< < <

0 <u(zx,t),v(z,t) <1,
over © x [0,T].

Proof. In the general, since
0< '&/h(xa t)a ﬂh(.ﬁ, t)v ’Dh(l’, t)> ’[)h(xa t) <1

and on the other hand according to the lemma 3.1
ap(x,t) < ap(x,t), Op(z,t) < op(x,t),
by setting h to infinity, we will have over the entire domain
0 <a(x,t) <aulx,t) <1, 0 < o(z,t) <v(x,t) <1.

Next, we consider the functions z(x,t) = u(z,t) — a(z,t) > 0 and w(z,t) = v(x,t) — v(x,t) > 0, then we
define the following functions

Fi(z,t) = /Q[k(w y,u(x,t) + o(z, t))aly, t) — k(z,y,a(x,t) + 0z, t))u(y, t)ldy, (10)
Fy(z,t) = /Q[k(x ya(x, t) + 0(x,t))aly, t) — k(z, y, a(z,t) + o(z, 1)) a(y, t)|dy, (11)
Fy(z,1) = /Q[k(x y (e, t) +0(x,4)0(y,t) — k(2,y, a(x, t) + (2, 1))0(y, t)]dy. (12)

By subtracting 4 — % and ©¥ — 9, the system of the following equations is obtained

gj = DAz + 0vFy(z,1), (13)
glf :DvAw+(1 —5)’}/F2($,t)+pF3(ﬂf7t) — aw, (14)
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with conditions

dz Ow

on = o0 ="
in 09 x [0,7] and
Z(.CIZ‘,O) = ’UJ(iL‘, O) =0,

in §2. By adding and subtracting the phrase

/Qk(x,y,a(x,t) + 0(z,t))z(y, t)dy,

to the relationship (10), (11) and also by adding and subtracting the phrase

[ ket t) + o, 0wy, )
Q
to the relationship (12), we will have

Fi(z,t) <|Q[Cw(z,t) + [[2(-, )| 1 (0)
Fy(z,t) <|Q[Cz(z,t) + [[2(-, D)l 1 (0)

Fy(x,t) <|Q|Cz(x,t) + [lw (-, )|l 11 (-

Finally, by multiplying z in the equation (13) and also by multiplying w in the equation (14) Using Holder’s
inequality for every ¢ € [0, 7] we have

d
7 Q(||w||2+||2|!2)d:v§ (7+p)lﬂ\(0+2)/§2(llwﬂ2+HZHQ)dl‘,

we conclude that for arbitrary = € Q, z(z,0) = w(z,0) = 0.
Then the granular inequality implies ||w||*+||z]|* = 0 which means z(z, t) = w(z,t) = 0 almost is everywhere
in ©Q x [0,T]. The result is that & = & = v and ¥ = 0 = v solve the equation (1). O

Theorem 3.3. Under the assumptions of Theorem 3.2, problem (1) has a unique regular solution which
satisfies the condition 0 < u(z,t),v(x,t) <1 over Q x [0,T] and depends continuously on the initial values.
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Abstract

In this paper we consider the minimization of two classes of polynomials over the standard simplex.
These polynomials have their variables labeled by the edges of a complete uniform hypergraph and their
coeflicients are defined in terms of some cardinality patterns of unions of edges. Data envelopment Anal-
ysis (DEA) is a nonparametric method that aims to use scientific methods in order to investigate the
performance of Decision-Making Unit (DMU). One of the interesting subjects in DEA is the minimization
of the empirical error, satisfying, at the same time, some shape constraints (convexity and free dispos-
ability). Unfortunately, by construction, DEA is a descriptive approach that is not concerned about
preventing overfitting. In this research, the question is whether these polynomials attain their minimum
value at the barycenter of the standard simplex, which corresponds to showing optimality of the uniform
distribution for the underlying queuing problem.

Keywords: Polynomials, Data Envelopment Analysis, optimization model, hypergraph, symmetric

AMS Mathematical Subject Classification [2010]: 13D45, 39B42

1 Introduction

Optimizing Hypergraph-Based Polynomials Modeling Job-Occupancy in Queuing with Redundancy Schedul-
ing. In this paper we consider a question posed in [1] coming from redundancy scheduling in queuing theory.
Redundancy scheduling is based on the idea that sending the same job to multiple distinct servers can be
advantageous, if balanced against the risk of wasted capacity. Here one wants to determine the optimal
policy of choosing which subset of servers one should send the copies of the job to, and it is conjectured
that the uniform probability distribution is optimal. This can be formulated as saying that a certain highly
symmetric polynomial attains its minimum at the normalized all-one vector. While we do not manage to
prove the general case, we prove a similar result for a simplification of the family of polynomials by exploiting
its symmetries, as well as some special cases of the original problem. Symmetry is used more generally to
give tractable reformulations for the semidefinite bounds arising from the next levels of Lasserre’s hierarchy
in [2] For more examples and a broad exposition about the use of symmetry in semidefinite programming we
refer to [3] and further references therein. In the other hand Data Envelopment Analysis (DEA) (Charnes et
al. [4]) is one of the existing techniques for estimating production functions and measuring efficiency. DEA

relies on the construction of a polyhedral technology in the space of inputs and outputs that satisfies certain

1Speaker
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classical axioms of production theory (e.g., monotonicity and convexity). It is a non-parametric data-driven
approach with many advantages from a benchmarking point of view. Additionally, the treatment of the
multi-output multi-input framework is relatively straightforward with DEA, in comparison with other meth-
ods available. However, Data Envelopment Analysis has been criticized for its non-statistical nature, even
being labeled as a pure descriptive tool of the data sample at a frontier level with little inferential power.

In this paper, our main objective is to use DEA for polynomial optimization.

2 Methods
2.1 DEA

DEA method introduced by Charnes et al (1978), DEA model can estimate an efficiency frontier by consid-
ering the best performance observations (extreme points) which “envelop” the remaining observations using
mathematical programming techniques. The concept of efficiency can be defined as a ratio of produced

outputs to the used inputs:
outputs

(1)

ef ficiency = inputs

So that an inefficient unit can become efficient by expanding products (output) keeping the same level of
used resources, or by reducing the used resources keep the same production level, or by a combination of
both. Considering j = 1,...,m Decision Making Units (DMUs) using z;(¢ = 1,...,n) inputs to produce
yr(r=1,...,s) outputs and prices (multipliers) v; and u, associated with those inputs and outputs, we can

also formalize the efficiency expression in (1) as the ratio of weighted outputs to weighted inputs:

.. Zs_l UrYrj
ef ficiency = ==—=—"= 2
D i1 Vii @
S Ulro  o - —
maXW Zuryrj - Zviwij <0 Virjg; viur>0 (3)
=1 Y1*10 r=1 i=1

This problem is denominated the CCR constant return to scale input-oriented model, which by duality is

equivalent to solving the following linear programming

Min(0)
szib‘zj < 0z,
j=1
szyrj < 0o, @
=1
ZZ]' =1 (Zj Z 0)
j=1

As a result, we have an efficiency score which varies from 0 to 1 designating the efficiency for each decision-
making unit. We can obtain the marginal contribution of each input and output in the multiplier model of
(2), the peers of efficiency and respective weights in the primal (or envelopment) form of (3), and also the

potential for improvements and slacks in an extension form of (4).
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2.2 Polynomials

We now introduce the classes of polynomials of interest. Given integers n, L > 2, weset V = [n] = {1,...,n}
and £ = {e C V : |e| = L}, so that (V,E) can be seen as the complete L — uniform hypergraph on n
elements. We set m := |E| = ((_IlAn)) where we omit the explicit dependence on n, L to simplify notation,
and we let Am = {z = (re: e€ ECR™): >0, X ) (e € E)(ze = 1)}. denote the standard
simplex in R™. The elements of Am correspond to probability vectors on m items and the barycenter
¥ = % (1,...1) of Am corresponds to the uniform probability vector. Given an integer d > 2 we consider

the following m — variate polynomial in the variables z = (ze : e € F), which is a main player in the paper:

ZH |61U Z| (5)

Ed i=1

So fgq is a homogeneous polynomial with degree d. We are interested in the following optimization problem

fa(z) = min fy(z)

asking to minimize the polynomial f; over the simplex Am. The main conjecture, which is stated in (4),

claims that the minimum is attained at the uniform probability.

Conjecture 2.1. Given integers n,d, L > 2, is the polynomial f4(x) in (5) attains its minimum over Am

at the barycenter x* of Am.

As explained in [1], the motivation for this conjecture comes from its relevance to a problem in queuing
theory, that we will briefly describe in the next section. In this chapter we are only able to give a partial
positive answer to this conjecture, namely, in the case d = 2 and in the case d = 3 and L = 2. As a first step
toward understanding the polynomials fd we investigate a related, easier to analyze, class of polynomials.

Given an integer d > 2 we consider the following related class of polynomials
1
- - 6
pd($) Z |€1 U- U€i| ( )
ec

which are also homogeneous with degree d. Note that, for degree d = 2, we have fo = 1Lp2. For degree
d > 3 the polynomials f; have a related, but more complicated structure than the polynomials p;. Here too
we may ask whether the minimum of pg over the standard simplex Am is attained at the uniform probability
vector x*. For the polynomials p; we are able to give a positive answer in the general case. The following
is the first main result of the paper.

As we will see, the analysis of the polynomials f; is technically much more involved than for the poly-
nomials pg, and we have only partial results so far. In both cases the key ingredient is showing that the
polynomials are convex on the simplex, i.e., that they have positive semidefinite Hessians at any vector in
Am. It turns out that the Hessian of the polynomial pg enters some way as a component of the Hessian
of the polynomial f;. So this forms a natural motivation for the study of the polynomials pg, though they
form a natural class of symmetric polynomials that are interesting for their own sake. Exploiting symmetry
plays a central role in our proofs. Indeed, the key idea is to show that the polynomials are convex, which,
combined with their symmetry properties, implies that the global minimum is attained at the barycenter
of the simplex. For this we show that their Hessian matrices are positive semidefinite at each point of the

simplex, which we do through exploiting again their symmetry structure and links to Terwilliger algebras.
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Symmetry is a widely used ingredient in optimization, in particular in semidefinite optimization and alge-
braic questions involving polynomials. We mention a few landmark examples as background information.
Symmetry can indeed be used to formulate equivalent, more compact reformulations for semidefinite pro-
grams. The underlying mathematical fact is Artin-Wedderburn theory, which shows that matrix x-algebras
can be block-diagonalized. An early well-known example is the linear programming reformulation from [4]
for the Theta number of Hamming graphs, showing the link to the Delsarte bound and Bose-Mesner algebras

of Hamming schemes [5].

2.3 Motivation

Our motivation for the study of the polynomials p; and f; comes from their relevance to a problem in
queuing theory. The question whether they attain their minimum at the uniform probability distribution
was posed to us by the authors of [1], who conjecture this to establish a result about the asymptotic behavior
of the job occupancy in a parallel-server system with redundancy scheduling in the light-traffic regime (in
contrast to the heavy-traffic regime considered in [6]). In what follows we will give only a high-level sketch of
this connection, and we refer to the paper [1] for a detailed exposition. We also refer to [6] for an extended
review of the relevant literature. A crucial mechanism that has been considered to improve the performance
of parallel-server systems in queuing theory is redundancy scheduling. The key feature of this policy is that
several replicas are created for each arriving job, which are then assigned to distinct servers (and then, as
soon as the first of these replicas completes (or enters) service on a server the remaining ones are stopped).
The underlying idea is that sending replicas of the same job to several servers will increase the chance
of having shorter queuing times. This however must be weighed against the risk of wastage of capacity.
An important question is thus to assess the impact of redundancy scheduling policies. While most papers
in the literature of redundant scheduling assume that the set of servers to which the replicas are sent is
selected uniformly at random, the paper [1] considers the case when the set of servers is selected according
to a given probability distribution, and it investigates what is the impact of this probability distribution on
the performance of the system. It is shown there that while the impact remains relatively limited in the
heavy-traffic regime, the system occupancy is much more sensitive to the selected probability distribution
in the light-traffic regime.

We will now only introduce a few elements of the model considered in [1], so that we can make the link
to the polynomials studied in this paper. We keep our presentation high level and refer to [1] for details.
The setting is as follows. There are n parallel servers, with average speed p. Jobs arrive as a Poisson process
of rate nA for some A > 0. When a job arrives, L replicas of it are created that are sent — with probability
xe — to a subset e C [n] of L servers. Here, L > 2 is an integer and = = (ze) e € E is a probability
distribution on the set E = {e C [n] : |e| = L} of possible collections of L servers. As noted in [1] this can
be seen as selecting an edge e € E with probability ze in the uniform hypergraph (V = [n], E) (with edge
size L). An important performance parameter is the system occupancy at time ¢, which is represented by a
vector (eq,...,en), where M = M(t) is the total number of jobs present in the system and e; € F is the
collection of servers to which the replicas of the i’th longest job in the system have been assigned. We need
three modeling assumptions. First one needs to assume suitable stability conditions. Second, all servers
should have the same speed @ and, third, the service requirements of the jobs are assumed to be independent

and exponentially distributed with unit mean. Under these assumptions, the stationary distribution of the
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occupancy of the above edge selection is given by

(er _C H n)\meZ (7)

L Hler .

for some constant C' > 0. let Q,(z) be a random variable with the stationary distribution of the system
occupancy when the edge selection is given by the probability vector x = (xe) e € E. It then follows that,
for any integer d > 1, the probability that d jobs are present in the system is given by

P[Qx(z) =d] = Z m(er...e) (8)
Therefore, P[Qx(x) = d] is the polynomial f4(z).

3 Conclusion

It would be worth mentioning that we have two stages in the search for the generalization error bound:
the first stage is based on the construction of the class of piecewise linear hypotheses whose elements are
polynomials that are located as close as possible to the data sample, and the second stage is based on the
construction of the bound of the fat-shattering dimension of the class of hypothesis constructed in the first
stage. The minimization of the bound of the expected error using the bound of the fat-shattering dimension
calculated gives rise to the Data Envelopment Analysis-based Machines (DEAM) model as a method for
estimating piecewise linear production functions, which minimizes the generalization error as well as the

empirical error.
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Abstract
In this paper, we introduce a novel hybrid approach that combines support vector regression with
the spectral method to solve infectious disease models. Our results demonstrate that this innovative
method effectively addresses the challenges of solving dynamical systems, providing accurate and efficient
solutions.

Keywords: Supervised learning algorithm, Least squares support vector regression machines, collocation
method, Biology dynamical system.
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Many natural phenomena have been modeled using mathematical models such as differential equations or
statistics [4, 5]. In this way, some problems in biology and medicine have been modeled, and the importance
of these models appears in personalized treatment and disease control diseases [6].

In this way, infectious diseases have been modeled using differential equations and solved by various
methods [1, 8]. One of the important models in epidemiology is the Susceptible-Infected-Removed (SIR)
model, which was introduced by Ronald Ross and Kermack [7]. Subsequently, the researchers have been
solved the model by using various methods[9, 10]. The model comprises a system of three interconnected
non-linear ordinary differential equations for which no explicit analytical solution exists. The model has been
developed by many researchers in form of stochastic, fractional or modified by vaccinate effect [11, 12, 13].
The main SIR model has been introduced as following:

oS

E - _6517

‘;ﬁ — BST —l, (1)
OR

E —UI,
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Which R(t) = N — S(t) — I(t) and N shows the total population.

On the other hand, some of machine learning algorithms presented for prediction and classification on
the real data such as image, text [2, 3] and recently, machine learning methods and artificial intelligence
algorithms have emerged as effective solutions for solving these equations, demonstrating impressive accuracy
[14]. One standout method is least squares support vector regression (LS-SVR) [15] , which has been
successfully applied to a diverse range of equations since its introduction by Suykens et al[16, 17].

The method presented by Suykens and Mehrkanoon employs radial basis functions as the kernel, has
gained significant attention from scientists due to its high accuracy and efficiency in solving equations and
other researchers developed the method [18, 19].

This paper introduces a hybrid method that combines the strengths of LS-SVR and collocation method.
Section 2 provides a brief overview of LS-SVR and legendre polynomials, followed by a detailed explanation of
the combined method. Section 3 presents the results obtained, and the final section discusses and concludes
the findings.

2 Legendre LS-SVR methd

In [16] the authors have presented the LS-SVR for regression problem as follows:

minimize swlw+ Jele
w,b,e (2)
subject to  y; = wl @ (z;) +b+e;, i=1,...,N,
Here v € RT,b € R,w € R”, (-) : R — R" is the feature map and A is the dimension of the feature space.
The dual solution is formed as follows:

epy )-8

where Q;; = K (2;,2) = gp(mi)Tgp(a:j) is the ij-th entry of the positive definite kernel matrix. 1y =
1,..., 7 e RN a=|a,..., aN]T Y = [y1,- .. ,yN]T and Iy is the identity matrix.

For solving the systems of ODEs by machine learning algorithm, at first, we describe the system of
differential equation as following;:

Ul(t) = Fl(t,'LLl,'LLQ, -~-7un>7
UQ(t> :FQ(t,ul,UQ,...,un>, (4)
U3(t) = Fg(t,ul,m, ...,un),
subject to
W™ (20) = i, (5)

which m =0,1,...,n; — 1,7 =1,2,..,n. We can rewrite the method as following:

1 v

Ll(wl,)\l,el) = iwlTwl + 56?61 — /\1(U1(t) — Fl),
1 Y

Lo(wa, A2, e2) = =wi wy + —eL ey — Xo(ua(t) — F),

2( 2y N2 2) 9 2 W2 2 2 €2 2( 2() 2) (6)
1

L3(’(U3, A3, 63) = §wgw3 + %6?63 — )\3(U3(t) — Fg).

Now, by using K.K.T condition, we can reduced the optimization problem to an algebraic system of
equations.
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Figure 1: Legendre Least Square support Vector Regression method for numerical solution SIR model

3 Experimental Results

In this section, we demonstrate the results obtained using our proposed method for solving Eq. (1) with
S(0) =999, I(0) =1, R(0) = 0 and 8 = 0.0003, v = 0.1. Tables 1, 2, and 3 illustrate the approximate
solutions of the presented approach and we show the solution of the model by Legendre Lssvr method in
figure 1.

Table 1: Table of numerical result for Suspected cases in SIR model
t  LS-SVR method

0 998.9993
20 974.5587
40 480.2506
60 108.1149
80 67.311
100 60.9674

Table 2: Table of numerical result for Infected cases in SIR model
t LS-SVR method

0 1.0007
20 17.03959
40 274.6853
60 150.7034
80 33.1469
100 6.5646

Table 3: Table of numerical result for Removed cases in SIR model
t LS-SVR method

0 —0.003
20 8.4050
40 245.0639
60 741.1814
80 899.5418
100 932.4678
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4 Conclusion

In this paper, we presented an innovative hybrid method based on LS-SVR and Legendre collocation method
for solving an epidemiological disease model described in Eq. (1). The results showed that the presented
method is capable of solving this model accurately.
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Abstract

In this article, we investigate the behavior of the dynamic system of the HIV-1 virus and according
to it, we realize that the system is chaotic. Also we controll the chaotic system by designing a linear
controller based on the contraction method by applying the graphical algorithm.
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1 Introduction

There are different types of cancers that are mainly seen in patients with AIDS. AIDS begins when the virus
seriously damages the immune system, leading to certain types of infections or other medical complications,
including cancer. In this article, a dynamic model of the HIV-1 virus is defined by[l] , and the purpose
of the model we reviewed in this article is to describe the dynamics of HIV-1 infection in cancer patients.
Therefore, the model is presented as follows:

71 = z21[B1(1 - 7x1+3ﬁ+m3) — 1172]

Ty = wo[fa(l — LAL2EIDY — Gy 3y — myag] (1)

m
T3 = M2T2x3 — PT3

Where in the state variables are the population numbers of cancer cells (z1), healthy cells (z2), and HIV-
infected cells (z3). The constants 51 and P2 are the uncontrolled proliferation rate of cancer cells and the
intrinsic growth rate of healthy cells, respectively, with 51 > (2. Parameter 7; corresponds to the immune
system’s killing rate of tumor cells; 79 is the infection rate coefficient. Moreover, p is the effective carrying
capacity of the system; o is the losing rate of the immune cells because of the killing of cancer cells. Finally,
the constant p represents the whole immune system killing’s effect on the infected cells. The parameter

values are shown in Table(1).

Remark 1.1. Notice that the growth of the populations of the cancer and the immune system cells is

T1+To+a3

limited by a logistic-like function, given by 1 — m
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Table 1: Parameter values
Parameter Parameter value

B 0.1775
B2 0.03
m 1500
m 0.0001
- 0.0005
o 0.01
p 0.3
1’1(0) 678
1'2(0) 452
353(0) 0.25

In order to discuss the behavior of the system, first we get the equilibrium points to check the behavior
of this system. We use Grobner’s method to find equilibrium points. To check the stability of equilibrium

points, we calculate the Jacobian matrix of the system(1).

b1 — 2%961 - %362 - %113 — T2 —%1961 — My —%1961
J = —%372 — oM B2 — %1’1 - 2%1’2 - %9?3 — 0Nx1 — N2x2 —%m — 1222 (2)
0 M2T3 mr2 — P

By placing the parameters and equilibrium points in the matrix(2), the eigenvalues are given in the table2.

Table 2: The eigenvalues of the Jacobian matrix(2) for the values of Table(1)

Equilibrium A1 A9 A3
(0,0,0) —0.3 0.03  0.1775
(1500, 0, 0) —0.3 0.03  0.1775
(0,1500, 0) 003 01775  —03
(et ez 0) 0.1770  0.0299  —0.2989
(e ~0.2979  0.0331  0.1773

1500m1 12 p+n1pB2— 150077%51 +n20B81  p (1500m10p—15000m281+0pB1+pB2)m

(om—n2)n2p1 T2 (on1—n2)n261

0.1772  0.03229 —0.2977

Since some eigenvalues are positive, it is clear that the system(1) is unstable at the equilibrium points.

2 Main results

Since system(1) is unstable, we want to find a linear controller for the system by contraction method and

with the help of graphical algorithm.

Definition 2.1. [2] A nonlinear dynamical system is called contraction if is in the conditions The beginning

of a partial perturbation state variable is created, it converges exponentially to the same variable.
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Theorem 2.2. [3, 4] A continuous-time dynamic system m of dimension & = f (x,t) is contraction if there

exists a Jacobian matriz J such that for each i =1,...,m to have:
Jii (t,2) < 0
The graph G4 (A) constructed based on J described above does not contain directed loops and
a;j (t,x) agi (t,x) < 1.

The graphical algorithm is derived from the above theorem. Now we apply the steps of the algorithm
on system(1). The first step is to obtain the Jacobian matrix calculated in(2).

Using the Jacobian matrix, we write the adjacency matrix A:

A=

e =)
= o

1
1 (3)
0

Next, we need to specify the direction of the edges of the graph. To determine the direction of the edges,
we must first calculate a;;(i # j), then obtain the directional algorithm G4(A). To calculate a;j, the first
condition is that J;; should not be zero and in addition it should be negative. Therefore, we apply the

controllers as follows:
u = (uy,uz,u3)’ = (—nzy, —may, —kx3)’ st n>0,m>0k>0.

Applying the new controllers, we recalculate the Jacobian matrix:

—n+f1 — 2%551 - %@ - %333 — %2 —%371 — T —%11’1
J = —%3?2 — oMz —m+ B2 — %961 - 2%962 - %2563 — 0T — 22 —%3«“2 — )22
0 1223 —k +maxe —p

Now, by applying the controllers, we calculate o;:

B1
| Z 1l 0]
a3 = = 3—1-1 a1 =777 —3—-1-1
9 \—n+51—Q%wl—%lz—%ws—mwz\( ) 3 "””772””2”"( )
B2 B1
|—=2z2—0niz2| [—=tz1—ma1]
Q21 = B2 B2 B2 (3 -1- 1) 12 = - B1 (3 —-1- 1)
|[-m+B2—"2w1—-22 32— 2x3—0M1T1—N2T2| |[=n+p1—22 e — o — Loz —mas|
B2
|—=2x2—max2| |n2xs|
Qg3 = & 3—1-1 agg = —23—(3—-1-1
2 \*m+52*%wlfﬂfmf%weﬁdmwﬁnzle( ) 32 \*k+772w2fpl( )

By applying the condition aij(t,z)a;;(t,2) < 1, we introduce the controllers as follows, and the value of

parameters n, m, and k is determined which is shown in Table(3).
U= (ul,u2,u;z,)T = (—nx1, —mxo, —k::cg)T st n>0,m<0,k>0.

Table 3: controller gain
Parameter Parameter value

n 0.1775
m —0.03
k 6

The results are shown in Figures (1) and (2).
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Abstract

Mental well-being is an important aspect of the process of individual adaptation and development.
Coping strategies play a pivotal role in determining individual well-being, especially in the face of stress
and adversity. This article investigates the importance of different coping strategies in predicting well-
being by utilizing the feature importance metrics inherent to random forest models. The results show
that emotional support, active coping and positive reframing characteristics were the most important in
predicting well-being.

Keywords: Mental well-being, Coping strategies, Feature importance metrics, Random forest model.
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

An important indicator of mental health is well-being that can be defined as an effect of the cognitive and
emotional assessment of one’s own life, consisting of a high level of fulfilment in multiple areas [1]. In
today’s fast-paced and often stressful world, understanding the factors that contribute to individual well-
being is more important than ever. Well-being, encompassing physical, emotional, and psychological health,
is influenced by a multitude of factors, among which coping strategies are paramount. Coping strategies
refer to the specific efforts, both behavioral and psychological, that individuals employ to manage stress and
adversity.

Understanding coping strategies’ impact on psychological well-being is key to identifying strategies that
may serve as resources for successful adaptation. Existing research has explored the relationship between
coping styles and well-being. For example, Konaszewski et al. [2] have used structural equation modelling
to explore the relationships between coping strategies and well-being. Behbahani and Lajoie [3] utilized a
criterion profile analysis to investigates the impact of level and pattern of coping strategies in predicting
well-being. But, in none of these studies, the importance of each feature in predicting well-being has not
been discussed. To address this gap, we employ a machine learning technique, namely random forests, which
provides accurate predictions and offer insights into the relative importance of each feature in the prediction
process.

The main contribution of this article is to explore the importance of coping strategies in predicting well-
being using random forest feature importance metrics. We begin with an overview of the feature importance
analysis in Section 2. In Section 3, by analyzing a practical dataset from a recent psychological study, we
aim to identify which coping strategies are most influential in promoting well-being.
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2 Material and Method

2.1 Data

We utilized a preexisting dataset provided by Konaszewski et al. [2] which includes well-being and coping
strategies. Their study drew upon a sample of 253 juveniles, comprising 172 boys and 81 girls within the
age range of 13 to 18 years. The coping strategies were measured by using the Brief COPE questionnaire
that consists of 14 coping strategies [3]:

e Active coping: Taking active steps to deal with the problem.

e Planning: Developing a plan of action to address the problem.

e Using instrumental support: Seeking practical assistance or advice from others.
e Humor: The capacity to express or perceive what’s funny.

e Venting: Expressing negative emotions and seeking emotional support.

e Positive reframing: Finding positive aspects or silver linings in the situation.

e Acceptance: Accepting the reality of the situation and learning to live with it.
e Religion: Finding solace and support in religious or spiritual beliefs.

e Self-distraction: Distracting oneself from the problem through engaging in other activities.
e Denial: Refusing to accept or acknowledge the reality of the situation.

e Behavioral disengagement: Giving up or withdrawing from the situation.

e Self-blame: Blaming oneself for the problem or feeling guilty.

e Substance use: Using substances such as alcohol or drugs to cope.

e Emotional support: Showing care and compassion for another person.

Further, the mental well-being was measured using the Warwick-Edinburgh Mental Well-being Scale [1].

2.2 Random Forest Model

Feature importance refers to the techniques used to identify and quantify the contribution of each input
feature to the model’s predictions. Random forests model inherently provides measures of feature importance
through mean decrease in impurity Behbahani. The algorithm of random forest is a robust tree-based
technique in machine learning. It operates by generating multiple decision trees during the training phase.
Each tree is built using a random subset of the dataset, measuring a random subset of features at each split.
This randomness introduces diversity among the trees, which helps reduce overfitting and enhances overall
prediction accuracy. During prediction, the algorithm combines the outputs of all the trees, either through
voting for classification tasks or averaging for regression tasks. This ensemble approach, leveraging the
collective insights of multiple trees, ensures stable and precise results. Random Forests are extensively used
for both classification and regression tasks due to their ability to handle complex data, minimize overfitting,
and deliver reliable predictions across various scenarios. Here, we have used Scikit-learn library in Python
for implementing the random forest algorithm.
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3 Results

We employed three techniques to calculate feature importance in random forests, each offering unique
insights:

e Built-in feature importance: This method measures how much the impurity (or randomness) within a
node of a decision tree decreases when a specific feature is used to split the data.

e Permutation feature importance: Permutation importance assesses the significance of each feature
independently by evaluating the impact of individual feature permutations on predictions.

e SHAP Values: SHAP values delve deeper by explaining the contribution of each feature to individual
predictions.

Firstly, a RandomForestRegressor is conducted on the train data and then, the importance of features
(coping strategies) is evaluated using the above mentioned approaches. The results of these techniques are
shown in Figs. 1-3. It is observed that emotional support, active coping, and positive reframing were the
top three features, ranked by their importance scores, as the most important features.

Random Forest Feature Importances

Emotional_support
Active_coping
Positive_reframing
Self_blame
Substance_use
Denial
Behavioral_disengagement
Acceptance
Planning
Self_distraction
Religion

Humor

\Venting

uls

r T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Decrease in accuracy score

Figure 1: The amount of importance obtained by Built-in feature importance approach

4 Conclusion

This study highlights the critical role of coping strategies in predicting well-being, utilizing the robust
feature importance metrics provided by the random forest model. The findings underscore the importance
of emotional support, active coping and positive reframing strategies in predicticting well-being that offers
valuable insights for developing targeted mental health interventions.
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Permutation Importances
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Figure 2: The amount of importance obtained by Permutation feature importance approach

Feature Importance based on SHAP Values
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Figure 3: The amount of importance obtained by SHAP approach
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Abstract
During the outbreak of a pandemic, the information about the prevalence disseminated by the mass
media or infected individuals leads to changes in the behavior of the community. The information that
is generated is influenced by the delay in reporting by these infected individuals. This research proposes
a delay infectious disease model to investigate the impact of delay on the system dynamics and dis-
ease prevalence. It is observed that the system experiences Hopf, double-Hopf, and Bautin bifurcations.
Numerical simulations provide more evidence that the analytical findings are accurate.

Keywords: Hopf bifurcation, Double-Hopf bifurcation, Bautin Bifurcation, Delayed system
Mathematics Subject Classification [2010]: 37C75, 37G10

1 Introduction

The spread of infectious diseases is one of the major public health problems worldwide, and extensive re-
search has been conducted in the direction of mathematical modeling regarding these diseases, including
SARS, influenza, and others like them, with the objective of identifying methods to regulate the transmis-
sion of diseases [1]. Among these methods are the use of various pharmaceutical and non-pharmaceutical
approaches. Non-pharmaceutical methods such as education, awareness, information, and others have been
examined in [2]. Whenever a disease becomes prevalent in a community, information related to the disease
prevalence and mortality rate is disseminated by the mass media or the people themselves. This informa-
tion leads to behavioral changes in individuals, who then use protective measures such as wearing masks to
protect themselves. These behavioral changes resulting from information ultimately impact the progression
and spread of the disease [3]. As a result, this information is used as a highly effective non-pharmaceutical
control intervention.

Recently, researchers have focused on examining the impact of information on the transmission of infec-
tious diseases. In reference [4], the researchers combined the force of infection with the effect of awareness
arising from the media in a STRS epidemic model, and pointed out that the impact of awareness consider-
ably diminishes the disease’s prevalence, however, it is impossible to eradicate it. From this discussion, it
is clear that the progression of the disease is significantly influenced by the impact of information and the
delay in its dissemination.

We examine the effect of behavioral changes induced by information in susceptible individuals in the
event of a delay in the provision of information by infected individuals. We show that the system undergoes
a Hopf bifurcation. We also demonstrate the stability and orientation of these periodic solutions, as well as
the existence of a double-Hopf and Bautin bifurcations.
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2 System Modeling and Existence of The Equilibrium Point

We consider the system introduced in [5]:

( % =a— Bry — px — Onwx + 6z
% = Pry — (n+E+7)y
I (1)
a =y + Onwz — (1 + 6)z
dw ay
L@t T 1+by Y

All parameters are considered non-negative.

In model 1, the researchers assumed that aware individuals are immediately rendered immune to the
disease and are added to the recovered or immune population after taking protective measures. During
the outbreak of the disease, the dissemination of information regarding the prevalence is always delayed.
Therefore, we examine this delay in the dissemination of details in the system (1) to analyze the effect of this
delay on the dynamics of disease transmission. Therefore, considering the system in the following manner:

CC% =a— Bry — px — Onwx + 6z
dy
o =Py = (et &ty

(2)
d
° =y + Onwz — (u+0)z

dt

dw ayr

— = — cw
dt 1+ by,

where, y; = y(t — 7). The model has a unique interior equilibrium point as F, = (X, Y, 24, Wx), Where

>k 0 >k
e R it
b(p+€) + buy B _ po (Rio ~1)+ PO (ut) | M770a(ﬂ+§+’7)7 C=a (Rio —1), and Ry =

ptd? ) ) pto Be(u+9)
worth noting that Ry is the basic reproduction number of the system.

. It is

apB
u(pt+€+y)

3 Bifurcation Analysis for Time Delay (7 # 0)

The characteristic equation of the model (2) around E, is det(\ — Ay — A,e*7) = 0, where

[ —Onwe — By« — —B 0 —nb z |
B Y Baxs—0—7—p 0 0
AU = y
0 nw, ~y —pu—0 b,
i 0 0 0 —c |
and
[0 0 0 07
0 0 0 0
A =
0 0 0 0
a _ _aysb
L 0 bys+1  (by.+1)2 00 J
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Figure 1: a) The stability region at E, for the delay system (o = 5) is shown. The gray re-
gion represents an asymptotically stable parameter domain of equilibrium. At HH1 : (b,7,w;,ws) =
(0.227090, 59.464882,0.124348,0.051125), it represents a double-Hopf bifurcation. b) The stability re-
gion at E, for the delay system (o = 15) is shown. The double-Hopf bifurcation points in yellow
color are HH2 : (b,7,wi,w2) = (0.050450,41.625812,0.180458,0.073561) and HH3 : (b,T,wi,ws) =
(0.064067, 86.232928,0.164133,0.104127). The Bautin point GH in orange color is demonstrated.

If all eigenvalues of the characteristic equation have negative real part, then the equilibrium point will
be asymptotically stable whenever 7 > 0. By inserting the critical eigenvalue A = ¢ w, where w > 0, and
subsequently separating the real and imaginary components, the stability region can be obtained. By setting
w,y,€,0,n,8,a,¢,b,0 = 0.04,0.1,0.5,0.5,0.17,0.01,0.1,0.1,0.1,0.9 and considering bifurcation parameters
as b and 7, the stability regions for & = 5 and a = 15 are depicted in Fig. 1. Moreover, the phase spaces
around H H2 are depicted in Fig. 2 for transition between asymptotic behavior to unstable dynamics through
double-Hopf bifurcation.

As the parameter « is increased, the area of the stability region around the equilibrium point also
increases. For example, in Fig. 1(a), the stability region widens when parameter « increases from 5 to 15.
It is worth noting that for higher value of «, the boundary curves intersect each other and become more
complex.

In Fig 1 (b), a critical point GH is identified with the coordinates (b, 7) = (0.053535, 37.547558). This
point is additionally denoted by an orange point. The critical point GH clearly separates the curve into
two separate sections by different behavior. The curve lower than GH is associated with the negative value
of first Lyapunov coefficient, leading to the occurrence of a supercritical Hopf bifurcation. In contrast, the
curve upper than GH is associated with the positive of this value, which gives rise to a sub-critical Hopf
bifurcation. This situation is referred to the Bautin bifurcation, where two distinct periodic orbits can exist
simultaneously.
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Abstract
In this paper; we consider quasi-equilibrium problems wich extend equilibrium problems and quasi-
variational inequalities as wel as variational inequalities in Hadamard space.we study A -convergence of the
sequence generated by the extragradiant method to solution of quasi-equilibrium problem in Hadamard
space.
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1 Introduction

Let us present some concepts and facts regarding Hadamard spaces.

Let (X,d) be a metric space and z,y € X. A geodesic path connecting points x and y is an isometry
¢ :[0,d(x,y)] — X such that ¢(0)=z,c(l)=y where | := d(z,y) and d(c(t),c(t'))=[t—t| for all t,t'€[0,1].
The set ¢(]0,1]) C X is denoted by [z,y] and is called a geodesic segment (or geodesic) with the ends x and
y. Metric space (X, d) is called a geodesic space if any two points of X can be connected by a geodesic,
and it is called a uniquely geodesic space if for any two points from X there exists exactly one geodesic
connecting them. Let X be a uniquely geodesic metric space, for each z,y € X and for each ¢t€]0, 1], there
exists a unique point z€[x, y] such that d(z, z)=(1 —t)d(x,y) and d(y, z)=td(z,y). We will use the notation
tx ® (1 — t)y for denoting the unique point z satisfying the above statement. A geodesic space X is called
CAT(0) space if for all z,y, z€ X and t€[0, 1] it holds that

d*(tr @ (1 — t)y, 2)<td*(z, 2)+(1 — t)d*(y, 2)—t(1—t)d*(z, ). (1)

A complete CAT(0) space is called an Hadamard space. Suppose that X is a metric space and C is a

nonempty closed and convex subset of X.Moreover,K : C' — (' is defined asa multivalued mapping such

!Mahdiyeh Shaker Sar
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that for all x € C, K(z) is a nonempty closed and convex subset of C. In addition,f : X x X — R is
a bi-function. Let x*be a fixed pointof K(-). Then, the quasi-equilibrium problems QEP(f K) consists of
finding

faty) 20, Wye K@), @)

Let S(f, K) and F(K) bethe sets respectively including all solutions of QEP(f,K) and all fixed-points of K.
The associated Minty quasi-equilibrium problem isto find z* € K (z*) such that f(y,z*)<0 for all y € K (z*).
When K(z) = C for all x € C the quasi-equilibrium problem QEP(fK) and the associated Minty quasi-
equilibrium problems respectively change to a classical equilibrium problemEP(f,C) and classical Minty
equilibrium problems (see [5]).

For instance, quasi-variational inequality problems are considered as the quasi-equilibrium problems. Con-
sidering the duality pair as(-,-) : X* x X — R which leads to (z,z) = z(z).The map T : X — E*and
f(z,y) = (T'(x),y — x) are defined. Additionally, finding a point z* € K(x*) for every x € K(x*) , which
satisfies (T'(x*),z —x*) > 0 is defined as the quasi-variational inequality problem QV IP(T,K). Considering
these definitions, it can be demonstrated that QEP(f,K) is equivalent to QVIP(T,K).

2 Some important conditions

A sequence {z,} in an Hadamard space (X, d) A-converges to z€X if A({xy, })={z}, for each subsequence
A

{zn, } of {zn}. We denote A-convergence in X by — and the metric convergence by — .

We introduce now some conditions on the bifunction f and the multivalued mapping K which are needed

in the convergence analysis.

Bl: f(z,z)=0 for all z€X.
B2: f(x,-):X—R is convex and lower semicontinuous for all z€X.
B3:  f(-,y) is A-upper semicontinuous for all yeX.

B4: f is Lipschitz-type continuous, i.e. there exist two positive constants ¢; and co such that
f(xay) + f(y7 Z) > f(x’ Z) - CldQ(xa y) - CQdQ(yv Z), v£7y7 z € X.

B5:  f is pseudo-monotone, i.e. whenever f(x,y)>0 with z,y€X, it holds that f(y,x)<0.

B6: K j:C’—>2C, (1<j<M) are quasi-nonexpansive and demiclosed mappings with nonempty, closed and

convex values.

In this section, we assume that CCX is a nonempty, closed and convex set of an Hadamard space
X. Let the bifunction f:XxX—R satisfies B1—B5 and let Kj:C'—>20 for all 1<j<M be multivalued
quasi-nonexpansive mapping and satisfy in B6. Let A;: X==X* for all 1<i<N be multi-valued monotone
operators. We introduce the following algorithm for finding a common element of the set of solutions of a

quasi-equilibrium problem and a common zero of a finite family of monotone operators.
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Algorithm1 Initialization: Choose vg, u€C and fore sequences {\,}, {8n}, {75} and {a,,} such that

(H1) {An} C [a,8] € (o,{mm{i L L.

261 ’ @
(H2) {Bn} C le,d] € (0,1),
(H3) {~:} C (0,00) and liminf~: >0 for i = 1,2,--- , N,
n—oo
(H4) {an} € (0,1), ILm ap=0and > a, = oc0.
Set n=0 and go to Step 1.
Step 1: Compute
tn = J W0 0JA (vy)
R gL
Step 2: Compute
Wy = PKM(tn)O e OPKl(tn)(tn)-

Step 3: Compute
Tn = ann %) (1 - Bn)wn

Step 4: Solve the following minimization problem and let y,, be the solution of it, i.e.

. 1
Yn = argmingec{ f (T, y) + Kdz(wn,y)}-

Step 5: Solve the following minimization problem and let z, be the solution of it, i.e.
. 1
2n = argminyec{f(yn,y) + 53— (n, y)}-
n

Step 6: Compute

Upt1 = apu @ (1 — ) 2.

Put n:=n+1 and go to Step 1.
Suppose that Conditions B1—B6 hold and S* # (). Then the sequence {z,} generated by Algorithml
converges strongly to Pg«u.

The convergence of the given algorithm is illustrated with a numerical example and figures 1,2

10 20 30 4 50 10 0 30

Figure 1: Plotting of dg(zy,0) Figure 2: Plotting of dg(vy, vp—1)
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Abstract

Radiomics converts medical imaging into quantitative data by extracting numerous features through
advanced algorithms. This review highlights its principles, applications, challenges, and future directions.
Radiomics focuses on feature extraction, including image acquisition, segmentation, and analysis. It shows
significant promise in oncology for tumor analysis, neurology for brain tumors and neurodegenerative
diseases, as well as in cardiovascular and liver disease imaging. Despite its potential, challenges like
standardization, data quality, and interpretability hinder clinical adoption. Future directions involve
integrating radiomics with multi-omics data, advancing Al and deep learning, and moving towards clinical
application. Radiomics is poised to enhance diagnosis and treatment, improving patient care across various
diseases.

Keywords: Radiomics, medical imaging, quantitative data, diagnosis, prognosis
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Radiomics is an innovative field that extracts a large number of quantitative features from medical images
using advanced computational algorithms. By converting images into high-dimensional data, radiomics
facilitates the discovery of patterns and correlations that are invisible to the human eye. This review discusses
the principles, applications, challenges, and future directions of radiomics, highlighting its transformative
potential in various medical domains.

1.1 Principles of Radiomics

1.1.1 Feature Extraction

Feature extraction is the foundation of radiomics. It involves the following steps:

Image Acquisition: High-quality images are acquired from modalities such as CT, MRI, PET, and ultra-
sound.

Segmentation: Regions of interest (ROIs) are delineated, either manually or using automated algorithms.

Feature Calculation: Quantitative features are extracted, categorized into:
e First-order statistics: Describing the distribution of voxel intensities (e.g., mean, standard deviation).

e Shape features: Characterizing the geometry of the ROI (e.g., volume, surface area).

corresponding author
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e Texture features: Capturing the spatial arrangement of voxel intensities (e.g., Gray-Level Co-occurrence
Matrix [GLCM]).

e Wavelet features: Decomposing the image into multiple frequency components.

1.1.2 Data Processing and Analysis

Once features are extracted, they undergo several processing steps, including normalization, feature
selection, and machine learning modeling. These steps help in reducing dimensionality and improving
the robustness and interpretability of the models.

1.2 Applications of Radiomics
1.2.1 Oncology

e Tumor Characterization Radiomics has shown immense potential in oncology for tumor characteriza-
tion. Studies have demonstrated that radiomic features can differentiate between benign and malignant
tumors, as well as between different tumor grades and histological subtypes [1]. For example, radiomic
analysis of lung cancer CT images can predict histological subtypes and genetic mutations such as
EGFR and KRAS [2].

e Prognosis and Treatment Response Radiomics can also predict patient prognosis and response to
treatment. Pre-treatment imaging features have been correlated with overall survival, disease-free
survival, and response to therapies in various cancers [3]. In breast cancer, radiomics combined with
machine learning algorithms has been used to predict response to neoadjuvant chemotherapy [4].

1.2.2 Neurology

e Brain Tumors In neuroimaging, radiomics aids in the characterization and prognosis of brain tumors.
MRI-based radiomic features can distinguish between different types of brain tumors and grades,
as well as predict genetic mutations such as IDH status in gliomas [5]. Radiomics can also predict
treatment response and survival outcomes in patients with brain tumors [6].

e Neurodegenerative Diseases Radiomics is being explored for diagnosing and monitoring neurodegener-
ative diseases. For instance, radiomic features from MRI scans have been used to differentiate between
Alzheimer’s disease and other types of dementia, as well as to predict disease progression [7].

1.2.3 Cardiovascular Imaging

Radiomics provides valuable insights into cardiovascular diseases. Radiomic features from CT and
MRI can assess plaque characteristics in coronary artery disease, predict the risk of adverse cardiac
events, and evaluate myocardial tissue properties in conditions like cardiomyopathy [8].

1.2.4 Liver Disease

In liver disease, radiomics is used for diagnosing and managing conditions such as non-alcoholic fatty
liver disease (NAFLD) and hepatocellular carcinoma (HCC). Radiomic features from CT and MRI
can grade liver fibrosis, differentiate between benign and malignant liver lesions, and predict patient
outcomes [9].
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1.3 Challenges in Radiomics
1.3.1 Standardization

Standardization is a significant challenge in radiomics. Variability in imaging protocols, feature ex-
traction methods, and data processing steps can lead to inconsistent results. Standardized guidelines
and protocols are necessary to ensure reproducibility and comparability of radiomic studies [10].

1.3.2 Data Quality and Quantity

High-quality imaging data and large datasets are crucial for robust radiomic models. Ensuring data
quality and obtaining large, annotated datasets can be challenging due to privacy concerns and the
labor-intensive nature of manual annotations [11].

1.3.3 Interpretability

Complex machine learning models used in radiomics can be difficult to interpret. Enhancing the
interpretability of these models is essential for clinical adoption. Techniques such as feature importance
analysis and visualization tools can help in understanding model predictions [12].

2 Main results

Future directions in radiomics include integrating radiomic data with other omics data, such as ge-
nomics and proteomics, to provide a comprehensive understanding of disease biology and enhance
predictive modeling. This multi-omics approach holds significant potential for advancing personal-
ized medicine by offering deeper insights into the molecular underpinnings of diseases. Additionally,
advancements in artificial intelligence (AI) and deep learning are poised to revolutionize radiomics.
AT can automate the feature extraction process, improving the accuracy and robustness of models,
while deep learning techniques can uncover novel features that traditional methods might miss, further
enhancing the predictive power of radiomics.

Efforts are also focused on translating radiomic research into clinical practice. This involves the de-
velopment of user-friendly software tools, validation of radiomic models through large, multi-center
studies, and the creation of clinical implementation guidelines. These steps are crucial for ensuring
that radiomic advancements can be effectively and safely utilized in clinical settings. Radiomics rep-
resents a significant leap in medical imaging, with applications in oncology, neurology, cardiovascular
imaging, and liver disease. Despite existing challenges, ongoing research and technological progress
are expected to overcome these barriers, ultimately realizing the full potential of radiomics to improve
patient care.
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Abstract

Diabetic retinopathy (DR) is the leading cause of preventable blindness among adults aged 2074.
Major organizations recommend regular screenings every 12 to 24 months for patients with minimal or no
DR. However, the rising prevalence of diabetes challenges the efficiency of these screening programs. To
improve efficiency, screenings could be tailored based on the likelihood of DR, development or progression.
This study introduces a deep learning model using EfficientNet-B2 to classify DR images into five stages:
no DR, mild DR, moderate DR, severe DR, and PDR. The model is trained on a dataset of 35,126 images
and evaluated using accuracy and confusion matrix analysis. Two-stage testing is performed with learning
rates of 0.001 and 0.0001. The model achieves a maximum validation accuracy of 0.8131 and 0.8019, and
test accuracy of 0.8176 and 0.8030 in the first and second stages, respectively.

Keywords: Diabetic retinopathy, Deep Learning, Convolutional neural network
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

Diabetic retinopathy (DR) is a severe complication of diabetes that can cause blindness if not detected
early. It damages the retina’s blood vessels and has two stages: non-proliferative (NPDR) and proliferative
(PDR). NPDR, the early stage, involves microaneurysms (MAs), hemorrhages (HEMs), and exudates (EXs).
If untreated, it can progress to PDR, which presents with severe retinal abnormalities. Early diagnosis is
crucial to prevent vision loss, but manual diagnosis by ophthalmologists is time-consuming, costly, and prone
to errors. Severe NPDR presents with widespread retinal abnormalities (Fig. 1).

Deep learning (DL), particularly convolutional neural networks, has become a popular and efficient
technique for medical image analysis and classification, providing significant improvements in DR, detection
[1].

Biomedical imaging and computer-aided systems are essential for visualizing internal organs and diag-
nosing conditions like DR. The prevalence of diabetes and DR is rising globally, with an estimated increase
in diabetic individuals from 463 million in 2019 to 700 million by 2045. Early detection methods, including
image preprocessing and machine learning (ML) techniques such as support vector machine (SVM) and
K-nearest neighbors (KNN), are critical. Recent advancements in DL and image processing have led to

1Speaker
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i I i
a. Normal b. Mild NPDR ©. Moderate NPDR

d. Severe NPDR . Proliferate_DR

Figure 1: Different stages of DR: (a) no DR, (b) mild, (c¢) moderate, (d) severe, and (e) PDR.

more effective and efficient DR, detection methods, reducing the burden on ophthalmologists and improving
patient outcomes [2].

Diabetic patients often require hospital care for vision issues like PDR or vitreous hemorrhage. Early
detection with retinal ophthalmoscopy and deep DL techniques improves diagnosis and treatment accuracy,
achieving 70-85% accuracy comparable to clinical methods. However, unbalanced datasets, such as those in
the 2015 EyePACS Kaggle competition, pose challenges for DL models [3]. CNNs dominate DR classification
using architectures like AlexNet, Inception-v3, and ResNet for feature extraction and classification. Image
preprocessing techniques improve quality and address class imbalances, including noise removal, normaliza-
tion, and augmentation. Standard datasets like DIARETDBI1, E-ophtha, and DRIVE aid training, using
metrics such as accuracy, sensitivity, specificity, and AUC to enhance DR detection efficiency [4]. Studies
automate DR lesion detection and classification using DL. Notable results include K. Xu et al. achieving
94.5% accuracy [5] in binary classification and G. Quellec et al. reporting high AUCs [6]. R. Pires et al.
achieved a 98.2% AUC on Messidor-2 [7], and H. Jiang et al. reached 88.21% accuracy with pre-trained
models [8]. In multi-level classification, V. Gulshan et al. [9] achieved 93% specificity using Inception-v3,
while M. Abramoff et al. [10] combined CNNs with IDX-DR for a 0.98 AUC. H. Pratt et al. [11] classified DR
into five stages with 75% accuracy and 95% specificity, and Wan S. et al. [12] fine-tuned VggNet-s to 95.68%
accuracy. Lesion-based classification focused on specific DR lesions. J. Orlando et al. [13] used a custom
CNN for red lesions, achieving a CPM of 0.4874, while P. Chudzik et al. [14] detected microaneurysms with
a custom CNN, achieving an ROC score of 0.355. Adem K. et al. [15] achieved high accuracies for exudate
detection. Vessel-based classification involved extracting retinal blood vessels. Vengalil S.K. et al. [16] used
a modified CNN, achieving 93.94% accuracy and an AUC of 0.894 on HRF, while Oliveira A. et al. [17]
achieved high accuracies for retinal vessel segmentation. Cam-Hao et al. [18] used ResNet-101 for vessel
extraction, achieving 95.1% accuracy and an AUC of 0.9732 on the DRIVE dataset. Bhimavarapu et al.
[19] introduced an improved activation function, achieving 99.41% accuracy with ResNet-152 on a Kaggle
dataset.

This study utilized pre-trained models for diabetic retinopathy detection, leveraging: High-resolution
images captured under diverse imaging conditions; and Pandas for converting trainLabels into a series and
using get-dummies to encode categorical data stored in Numpy arrays.

2 Main results
In this study, pre-trained models like VGG16, ResNet18, and EfficientNet were compared, with EfficientNet-
B2 ultimately selected. The model was trained and validated using transfer learning to leverage knowledge

from related domains, reducing the need for extensive data labeling. EfficientNet, developed by Tan and
Le, scales CNNs uniformly across width, depth, and resolution, offering better classification accuracy with
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fewer parameters. The research used a public Kaggle dataset containing 35,126 images divided into five
classes. The dataset was split into 60% for training, 20% for testing, and 20% for validation, and stored
on Google Drive for easy access. Data Augmentation: Images were normalized and resized to 224224
pixels for compatibility with pre-trained CNN architectures. To prevent overfitting and enhance training,
data augmentation was applied, including random rotations (0-180 degrees), horizontal flips, and vertical
flips. Model Construction: Transfer learning was employed using the EfficientNet-B2 model to save time
and improve performance by leveraging pre-learned patterns. The model was implemented and trained in
Python using the PyTorch library, which provides flexibility, control, and efficient GPU processing. Due
to hardware limitations, all stages of the study were conducted on Google Colaboratory, which offers free
GPU resources. Data Preparation: The dataset, stored on Google Drive, was split into folders for training,
validation, and testing. Labels were automatically assigned by PyTorch based on folder names (0 to 4),
eliminating the need for additional labeling. Images were categorized as normal (0), mild (1), moderate (2),
severe (3), and proliferative DR (4). Parameter and Hyperparameter Tuning:

e Batch Size: A batch size of 32 was used due to Google Colab’s hardware constraints, balancing smooth
learning with computational efficiency.

e Loss Function: CrossEntropyLoss was employed for its effectiveness in optimizing deep learning models
by computing the logarithms of expected output samples.

e Optimization Algorithm: The Adam optimizer was chosen for its adaptive learning rates and quick
convergence, crucial for minimizing loss functions.

e Learning Rate: The default learning rate of 0.001 was used, alongside a comparative run at 0.0001 to
assess model performance.

e Number of Epochs: Due to dataset size and Google Colab’s execution limits, the model was trained
for 15 epochs.

e Model Implementation: The EfficientNet-B2 model was used with transfer learning. The final linear
layer was adjusted to match the study’s classification needs (5 classes).

Model performance was evaluated using accuracy and confusion matrix metrics, providing a quick as-
sessment of model training and overall performance.

In this study, a dataset of 35,126 images across all five stages of diabetic retinopathy was used, split
into 60% training, 20% testing, and 20% validation. The EfficientNet-B2 model was trained with the Adam
optimizer, using learning rates of 0.001 and 0.0001, and a batch size of 32. The best validation accuracy
was saved after each epoch, eliminating the need for early stopping. The highest validation accuracy was
0.8131 for a learning rate of 0.001 and 0.8019 for 0.0001. Test accuracy was 0.8176 and 0.8030, respectively.
Confusion matrices showed that in the first run (0.001 learning rate), out of 3,871 test images, 3,792 were
correctly classified, with 75 moderate and 4 high-risk images misclassified. For mild disease, 326 images
were misclassified as normal, and for moderate disease, 419 were correctly identified. Severe disease saw 47
correctly classified images. Misclassifications included 18 normal, 22 moderate, and 18 severe images. The
model converged better with a learning rate of 0.001 as shown in the accuracy and loss curves.
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Abstract

Spiking Neural Networks, drawing inspiration from the neurological system, represent the third gener-
ation of neural networks. These networks employ biological inspired neuron models to carry out compu-
tations. Neurons play a crucial role in the information processing and transmission within SNNs, as they
are responsible for firing spikes. In the SNN’s architecture, the firing of spikes process is mathematically
modeled as a non-differentiable Heaviside step function, which will cause a significant challenge in the
direct training of SNNs. The non-differentiability of the Heaviside step function is tackled by introducing
the surrogate gradient (SG) learning approach. Within SG, the Heaviside step function is used for con-
trolling spikes in the forward propagation process, while an alternative differentiable function is utilized
for gradient calculation during backpropagation. In recent years, various techniques have been proposed
to provide differentiable approximations of the spike firing mechanism. Nevertheless, the development of
new models is still of interest. In the current work, a novel approach for mathematical modeling of the
spike firing mechanism inspired by the behavior of biological neurons has been presented. The Oscilla-
tory and Laguerre Gaussian functions are introduced to tackle non-differentiability of the Heaviside step
function. The effectiveness of the approach compared to other conventional approaches has been shown
by solving continuous and discrete regression problems.

Keywords: Spiking neural network, Surrogate gradient, Regression
Mathematics Subject Classification [2010]:  92B20

1 Introduction

The human brain is a remarkable computational system that efficiently performs complex tasks. Artificial
neural networks (ANNs), which draw inspiration from this biological structure, have demonstrated significant
success in tasks such as pattern recognition, image classification, and natural language processing. Despite
their achievements, ANNs often utilize simplified neuron models that do not capture the temporal dynamics
observed in biological neurons. This disparity between artificial and biological intelligence has led to a
growing interest in exploring spiking neural networks (SNNs)[1].

SNNs are the third generation of neural networks, taking inspiration from biological neural systems.
They incorporate the concept of time and utilize spiking neurons that communicate through discrete pulses
rather than continuous activation values. This additional temporal dimension allows SNNs to potentially
achieve higher computational efficiency and biological plausibility compared to ANN.

One of the most importent challenge in the SNN is process of learning. To overcome this challenge
some approaches like Spike-Timing-Dependent Plasticity, ANN-to-SNN conversion, and Surrogate Gradient

1Speaker
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Learning are often used [2]. Surrogate Gradient Learning involves the use of a surrogate, which is a con-
tinuous function, to estimate the spike function during the back propagation process of a neural network.
This study introduce a the Oscillatory and Laguerre-Gaussian functions for this purpose.

Initially, the concept of spiking neural networks is expressed, and Subsequently, a challenge of surrogate
gradient learning is discussed. After that, introduce a way to tackle this challenge. Lastly, the proposed
approach is applied to solve the Continuous and Discontinuous regression problem.

2 Brain Inspired Neural Network

This section provides an overview of the spiking neural network by contrasting it with conventional neural
networks. The fundamental unit of processing in both ANNs and SNNs is the artificial neuron. ANNs employ
a static neuron model. Each neuron receives weighted inputs, an activation function apply on it and at last
take single output. Common activation functions include Sigmoid, Rectified linear unit (ReLU), and Tanh.
However, SNNs incorporate a more biologically realistic neuron model that captures the temporal dynamics
of biological neurons. There are various spiking neuron models, the Leaky Integrate-and-Fire (LIF) neuron
is a popular choice due to its simplicity and effectiveness[3] that can be mathematically expressed using a
differential equation that governs the voltage dynamics as follows:

dV (t)
C——==1I(t) — — 1

U 1) - 1)
where V' is the voltage across the cell membrane, R is the membrane resistance, I(t) is input current and C
is capacity. The model equation is valid for arbitrary time-dependent input until a threshold V4, is reached;
thereafter the membrane potential is reset. The firing frequency (spike trains) looks like:

spk(V) =

0 V<Va
1 V>V,

Using a forward Euler finite difference method to approximate a neuron model as bellow:

Vit+1)=(1- %V(t)) + I(t) — spk(V(t+ 1)) (3)

Data representation plays a crucial role in how information is processed within a neural network. ANNs
typically represent data as real numbers. SNNs offer a more flexible approach to data coding. They can
encode information in the timing and frequency of spikes. This allows SNNs to leverage the temporal
dynamics of spiking activity for information processing. The ability to represent and process temporal
information natively within the network structure is a key advantage of SNNs over traditional ANNs. There
exist a many way for coding data to a serise of a spike like Rate coding, temporal coding, and lower triangular
coding[4].

The process through which a neural network acquires and enhances its knowledge is known as the learning
paradigm. The primary learning technique in artificial neural networks (ANNs) is backpropagation.

Backpropagation has proven to be a powerful and effective approach for training deep ANNs. However,
it cannot be directly used for spiking neural networks (SNNs) due to the non-differentiable nature of the
spiking mechanism. In Figure (1), artificial networks are compared with spiking neural networks.

3 Learning paradigm

In this section, the mathematical model of SNN and the mentioned challenge in backpropagation will be
discussed and in the following, additional information explains why backpropagation is not used, and an
alternative approach involving surrogate gradients will be presented.
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Figure 1: (a) Artifitual neural network(b) Spiking neural network

3.1 Surrogate Gradient Learning

Backpropagation enables an ANN to learn by continuously adjusting the weights between neurons based
on the disparity between the network’s predicted output and the desired output (error). The error is then
propagated backward through the network, layer by layer. Backpropagation relies on the chain rule of
calculus to compute gradients, which are used to update the weights of the network during the learning
process. However, the chain rule assumes that all functions involved in the computation are differentiable.
In contrast, the spiking neural network model discussed previously operates using binary events called spikes.
These spikes represent the firing of neurons and are not continuous in nature. As a result, the operations
performed by the network are inherently discontinuous.
A L-layer spiking neural network is a mathematical function, f defined as:

x(0 = Spike trains, [; = wWz(=D) 4O [ =1...L (4)
f(2,0) = LIF o I, o LIF - - - LIF o I; (2)

where {I;}L, is linear function and it means input current.

To train the network effectively, it is imperative to adjust the weights of the network. This can be
achieved by derivation of the error concerning the network’s parameters. If we consider the error of a
spiking neural network as £ = >_p.. (f(x,0) — label)?, the weight update process can be demonstrated for
a one hidden layer network, as below:

oL o(f(x,0 O(LIF o I Ospk OV OI(t
0L 5 0U0) _ 5 0L oD) _ 5,0 0

ow oV 0I(t) ow (5)
Data Data Data

The partial derivative 8§€k can be represented as the Dirac delta function. This implies that the weight

is not update correctly. To address this issue, researchers have developed alternative methods for training
spiking neural networks [5]. These methods often involve approximations or modifications to the backprop-
agation algorithm to handle the discontinuities caused by spikes.

3.2 Neural Learnning

In general, the derivative of the arc tangent and sigmoid functions is often used to approximate the Dirac
function, as depicted in Figure (2-a). However, in this article, we aim to introduce alternative functions
that closely resemble the actual neuron model.

By observing the process of spike production in the neuron, it becomes that an electric current enters
the neuron to reach a threshold, resulting in the generation of a spike and a subsequent decrease in potential
value. This decreases the membrane potential value to be lower than the initial value (rest value). This
work introduces the alternative model, Laguerre-Gaussian (6), and Oscillatory radial (7) Functions inspired
by the real behavior of membrane potential changes over tim. As shown in Figure (2-c), the functions also
take negative values, which is similar to decreasing the potential below the initial value.

La(z) = (3/2 — |z[*) exp(~|z[*) (6)

Os(z) = (1 — x)}?(1 + 1z — 1042?) (7)
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4 Regression with Spiking Neural Network

ANNSs are primarily employed for computing the regression function, whereas spiking neural networks hold
less significance owing to their discrete characteristics. Kahana et al. investigate the use of spiking neural
networks for regression tasks and introduce a new coding approach[5].

In the upcoming section, we will introduce a spiking neural network. After that, we will examine two
regression issues, one continuous and one discrete. We will apply various spike estimation techniques to
these problems and then analyze and compare the outcomes.

A regression function is estimated using a 3-layer spiking neural network consisting of 60 neurons. The
training of the spiking neural network involves the utilization of 300 randomly selected points{(z;, y(x;))}329.
To address this problem, the approach employed involves the implementation of the most basic form of coding
and decoding, as illustrated below.

Coding
NIRRT

—_——
T

T
Decoding Ez;l Vz - f(.%', 9)
Such that ViL is the membrane potential at time step i of the last layer L, and T denotes the number of
training spikes. The cost function used to train the spiking neural network assesses the difference between
the expected and actual values as £ =Y _(y(z) — f(z,0))>.
In the following, two examples of function approximation using spiking neural networks are given, and
the results are compared.

[VlL,VQL,-~- ’VTL]

Continuous function

In this section, we select the labeled points from sin(x) such that z € [2,6]. The results of running the SNN
with different estimates are depicted in Figure 3, and the errors of different runs are showcased in Table 1.

In Table 1, the residual for regression using the Laguerre-Gaussian function is lower compared to the
others. However, the root-mean-square deviation error when using the Oscillatory function is similar to that
of the Laguerre-Gaussian function. Based on the results, the regression problem’s solution for estimation
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Estimation Rule | Lagurre -Gaussian | Oscillatory | derivation of arctangent | derivation of sigmoid
Residual 1.14e-02 1.10e-03 5.97e-03 2.88e-03
RMSD error 0.005300 0.00267861 0.023290 0.0230253

Table 1: Results from implementing the spiking neural network using different spike derivative estimates
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Figure 4: The original function and the function estimated by (a)Lagurre -Gaussian function (b) Oscillatory
function (c¢) derivation of arctangent functions (d)derivation of sigmoid functions

is better when using both Oscillatory and Laguerre-Gaussian functions compared to using arctangent and
sigmoid derivative functions.

Discontinuous function

In this section, we aim to estimate a specific function 8 using the same spiking neural network. The results
of the spiking neural network implementation are displayed in Figure 4.

(8)

| sin(x) x € [2,3]
yle) = {sm(m) +5 x € (3,5]

As depicted in Figure 4 , the results obtained from the approximation using the oscillatory function yield
better outcomes.
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Abstract

In this article, the coagulation process in food industry effluents has been investigated. Coagulation
processes using FeCl36H20 and Als(S04)318 H50 as coagulants were employed and designed for chemical
oxygen demand (COD) and total suspended solids (T'SS) removal from food industry wastewater. We
have used two types of artificial neural networks to model the performance of these two coagulants. Radial
basis networks (91et,;,) and generalized regression neural networks (Mety,p,,). Numerical results showed
that the performance of networks 9et,;, and Met gy, was much better than feed-forward networks (Dets ).
After modeling, with the help of collective intelligence such as genetic algorithm (GA), we find the optimal
values of these coagulants. Comparison of numerical results with other common methods such as response
surface methodology (RSM) shows the superiority of the proposed method.

Keywords: genetic algorithm, artificial neural network, Coagulation, chemical oxygen demand, total
suspended solids

AMS Mathematical Subject Classification [2010]: 13D45, 39B42

1 Introduction

Food industry wastewaters mainly contain leavenings, carbohydrate, organic and inorganic salts, oil and
grease, cleaning products and proteins which are difficult to treat by conventional physicochemical pretreat-
ment applications [2]. Conventional biological processes applied for the treatment of these wastewaters are
insufficient to meet discharge standards in many countries and new treatment methods are needed [3]. Thus,
researchers have recommended addition of chemical coagulants for treatment of these wastewaters[4, 5].
Moreover, coagulation process was used as a pretreatment application in the treatment of various food in-
dustry wastewaters. Aly(SOy4)3 was used as coagulant to treat wastewaters from instant coffee and coffee
products [6] and table olive processing [7] while FeCls was applied in the pretreatment of vegetable pro-

cessing [8] and table olive processing [7] wastewaters.

1G. R. Zaki
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Coagulation processes using FeCl36 Ho0O and Ala(S04)318H20 as coagulants were employed and designed
for chemical oxygen demand (COD) and total suspended solids (7°S'S) removal from food industry wastew-

ater.

2 Main results

In [1], the performance of each of the two coagulants Ala(SO4)318H20 and FeCl36H>0 is modeled as a

three-variable function using the least squares method as below

CODy(x,y,z) = 5.6875 + 3.375x — 0.0003y 4 0.0752 — 0.187522 + 0.00025zy — 0.0z2

+0.00000222 — 0.00005y= — 0.00222. @
CODp(z,y,z) = 22.0125 + 4.7063z — 0.01805y — 1.57875z — 0.44375z2 @)
+0.0016752y + 0.0622 + 0.0000058y + 0.000565y= + 0.0227522.
TSSs(x,y,z) = 55.65 + 3.81458x — 0.00681667y + 0.22625z — 0.1510422:
+0.000152y + 0.0037522 + 0.0000112833y? — 0.00043yz + 0.017458322. ®)
TSSp(z,y,z) = 37.9875 + 12.8875z — 0.11125y + 4.605z — 0.68752> n

— 0.001zy + 0.1622 + 0.000057y% — 0.00028yz — 0.08552.
where subscript A stands for coagulant Als(S04)318 HoO and and subscript F' stands for coagulant FeCl36 H2O.

Variable x shows the pH value, variable y the Dosage (mg/L) and variable z the reaction time. The above

functions are derived from the following experimental data using the least squares method. Each of the

Table 1: Input variables X = (z,y, z)
X | 9 9 9 9 ) 9 ) 9 7 7 7 7 7 7 7
500 500 1500 1500 1000 1000 1000 1000 500 1500 500 1500 1000 1000 1000
z | 15 15 15 15 ) D 25 25 ) ) 25 25 15 15 15

<

Table 2: Output variables Yr = (CODp,TSSF) for FeCl3s6Hy0O
CODpr | 19.7 224 271 38.6 264 282 282 348 282 37.7 21.9 427 282 287 29.8
TSSr | 8.9 872 R&7.5 928 49.7 67.7 695 74.7 70.1 828 85.1 92.2 727 80.1 77.3

Table 3: Output variables Y4 = (COD4,T'SSy) for Aly(SO4)318H20
CODy | 19.7 224 271 30.8 20.8 25.6 229 27.7 229 27.7 229 28.7 25.0 245 26.1
TSS4 | 77.0 828 84.8 91.2 765 855 80.1 894 72.8 89.7 87.2 955 80.4 81.6 &83.2

above functions calculates a value by receiving a three-dimensional vector. For better results, we suggest
neural networks that receive a 3D vector and calculate a 2D vector. In this way, two values COD and T'SS
are calculated together. In this case, unlike the above models, the optimal points of the model maximize
both output variables. Table (4) and Table (5), compares the results obtained from the radial base neural
network (91et,) and the generalized regression neural network (Metgrn,) with the measured data as well as
the results obtained from formulas (1)-(4). Also, figures 1 to 4 show these comparisons. Tables 6 and 7

show the optimal points and optimal values of both coagulandts based on the proposed methods and the
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method presented in [1]. Although the method presented in [1] has found better optimal values, it should
be noted that this method optimizes the function for only one of the values ( COD and T'SS ), and the

optimal point of one may not be the optimal point of the other.

Table 4: FBCZ36HQO

162

x Y z | COD TSS | CODy, TSSy, | CODgrnn  TSSgrnn | CODpse  T'SSise
5 H00 15| 219 859 21.9 85.9 219 85.9 21.238 82.25
9 500 15| 229 87.2 22.9 87.2 22.9 87.2 22.162 87.7
5 1500 15| 309 875 30.9 87.5 30.9 87.5 31.637 87
9 1500 15| 38.6 92.8 38.6 92.8 38.6 92.8 39.262 96.45
5 1000 5 | 264 49.7 26.4 49.7 26.4 49.7 27.575  52.075
9 1000 5 28.2 67.7 28.2 67.7 28.2 67.7 29.45 65.925
5 1000 25| 28.2 69.5 28.2 69.5 28.2 69.5 26.95 71.275
9 1000 25| 34.8 747 34.8 4.7 34.8 4.7 33.625  72.325
7 500 5 28.2 70.1 28.2 70.1 28.2 70.1 27.688  71.375
7 1500 5 377 828 37.7 82.8 37.7 82.8 35.788  80.925
7 500 25| 21.9 85.1 21.9 85.1 21.9 85.1 23.813  86.975
7 1500 25| 42.7 922 42.7 92.2 42.7 92.2 43.213  90.925
7 1000 15| 28.2 727 28.9 76.7 28.9 76.7 28.9 76.7
7 1000 15| 28.7 80.1 28.9 76.7 28.9 76.7 28.9 76.7
7 1000 15| 29.8 773 28.9 76.7 28.9 76.7 28.9 76.7
Table 5: Alg(SO4)318HQO
x Yy z | COD TSS | COD,, TSSy, | CODgrny  TSSgrmn | CODise  T'SSpse
5 o500 15| 19.7 7 21.74 77.84 19.7 7 19.95 75.112
9 500 15| 224 828 21.74 77.84 224 82.8 23.45 82.437
5 1500 15| 27.1 848 27.1 84.8 27.1 84.8 26.05 85.162
9 1500 15| 30.8 91.2 30.8 91.2 30.8 91.2 30.55 93.087
5 1000 5 20.8  76.5 21.74 77.84 20.8 76.5 21.6 75.675
9 1000 5 25.6  85.5 25.6 85.5 25.6 85.5 25.6 83.15
5 1000 25| 229 &0.1 21.74 77.84 22.9 80.1 22.9 82.45
9 1000 25| 277 89.4 27.7 89.4 27.7 89.4 26.9 90.225
7 500 5 229 728 21.74 77.84 22.9 72.8 21.85 75.512
7 1500 5 277 89.7 27.7 89.7 27.7 89.7 27.95 90.162
7 500 25| 229 872 229 87.2 22.9 87.2 22.65 86.737
7 1500 25| 28.7 95.5 28.7 95.5 28.7 95.5 29.75 92.787
7 1000 15 25 80.4 25.2 81.733 25.2 81.733 25.2 81.733
7 1000 15| 24.5 81.6 25.2 81.733 25.2 81.733 25.2 81.733
7 1000 15| 26.1 83.2 25.2 81.733 25.2 81.733 25.2 81.733
Table 6: Alg(SO4)318HQO

COD COD,; CODgpn | TSS TSS;, TSSgmm

x 9 7 6.1764 9 7 6.1764

Y 1493 1000 1327.8 1000 21.74 1327.8

z 25 15 22.47 25 15 22.479

Remov | 31.2 25.2 28.7 96.2 81.733 95.5
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Figure 1: Comparing the measured values Y with the values obtained from the proposed models(Y,; and
Yyrnn) and the model given in [1] (Yjse) for COD when using the Aly(S04)318H20 as a coagulant.
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Figure 2: Comparing the measured values Y with the values obtained from the proposed models(Y;;, and
Yyrnn) and the model given in [1](Ys.) for T'S'S when using the Als(S504)318H20 as a coagulant.
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Figure 3: Comparing the measured values Y with the values obtained from the proposed models(Y,; and
Ygrnn) and the model given in [1] (Vi) for COD when using the FeCl36H0 as a coagulant.
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Figure 4: Comparing the measured values Y with the values obtained from the proposed models(Y,; and
Yyrnn) and the model given in [1](Ys.) for T'S'S when using the FeCl36H0 as a coagulant.

Table 7: FeCl36H0

COD COD,, CODgmn | TSS 1TSSy, TSSgm
z 9 50001 75727 | 85 50001 7.5727
Y 1500 500 1405.2 1500 500 1405.2
z 25 15 24.074 16.5 15 24.074

Remov | 46.4 21.9 28.7 96.7 85.9 92.2

3 Conclusion

In this article, neural networks were used to model the behavior of two types of coagulants. Models 9tet,;

and Mety,p, performed much better compared to the models presented in [1]. It is clear that using a more

accurate model to find the optimal values will give more reliable results. In addition, the proposed models

optimize for both outputs COD and T'SS together. For optimization, we use the genetic algorithm(GA).
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summary statistics

min: 3.8 max: 5.33
median: 4.385
mean: 4.4045
estimated sd: 0.3208964
estimated skewness: 0.7032466
estimated kurtosis: 3.382149
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mle.g=fitdist (RBC, "gamma")
summary (mle.g)
1l o) @y 50 4 R Console sz 55 blos 25 >
> mle.g=fitdist (RBC, "gamma")

> summary(mle.g)

Fitting of the distribution ' gamma ' by maximum likelihood
Parameters :
estimate Std. Error
shape 195.44155 27.613943
rate 44.37324 6.277526
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shape rate
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